创建一个topic
./kafka-topics.sh --create --zookeeper 192.168.1.244:2181,192.168.1.245:2181,192.168.1.246:2181 --replication-factor 1
--partitions 1 --topic topic_test_zk_minOffset_zkGroup
查看topic列表
./kafka-topics.sh --list --zookeeper 192.168.1.244:2181,192.168.1.245:2181,192.168.1.246:2181
producer 代码如下
package com.kafka.test; import java.util.Properties; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; /** * @author:FengZhen * @create:2018年8月9日 */ public class Producer_zk { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "192.168.1.244:6667,192.168.1.247:6667"); //props.put("zookeeper.connect", "192.168.1.244:2181,192.168.1.245:2181,192.168.1.246:2181"); props.put("acks", "all"); props.put("retries", 0); props.put("batch.size", 16384); props.put("linger.ms", 1); props.put("buffer.memory", 33554432); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props); for (int i = 30; i < 40; i++) producer.send(new ProducerRecord<String, String>("topic_test_zk_minOffset_zkGroup", Integer.toString(i), "中文测试-"+Integer.toString(i))); producer.close(); } }
Streaming代码如下
package streaming import kafka.api.{OffsetRequest, PartitionOffsetRequestInfo, TopicMetadataRequest} import kafka.common.TopicAndPartition import kafka.consumer.SimpleConsumer import kafka.message.MessageAndMetadata import kafka.serializer.StringDecoder import kafka.utils.{ZKGroupTopicDirs, ZkUtils} import org.I0Itec.zkclient.ZkClient import org.apache.spark.streaming.dstream.InputDStream import org.apache.spark.streaming.kafka.{HasOffsetRanges, KafkaUtils, OffsetRange} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.{SparkConf, SparkContext} object KafkaLog_local_zk_minOffset_zkGroup { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("KafkaLog_local_zk_minOffset_zkGroup").setMaster("local[2]") val sc = new SparkContext(conf) sc.setLogLevel("WARN") val ssc = new StreamingContext(sc, Seconds(5)) val broker_servers = "192.168.1.244:6667,192.168.1.247:6667" val zk_host = "192.168.1.244:2181,192.168.1.245:2181,192.168.1.246:2181" //消费的 topic 名字 val topic : String = "topic_test_zk_minOffset_zkGroup" //创建 stream 时使用的 topic 名字集合 val topics : Set[String] = Set(topic) var kafkaParam:Map[String,String] = Map() kafkaParam += ("bootstrap.servers" -> broker_servers) kafkaParam += ("group.id" -> "test") kafkaParam += ("enable.auto.commit" -> "true") kafkaParam += ("auto.commit.interval.ms" -> "100") //创建一个 ZKGroupTopicDirs 对象,对保存 val topicDirs = new ZKGroupTopicDirs("topic_test_zk_minOffset_zkGroup_group", topic) //获取 zookeeper 中的路径,这里会变成 /consumers/test_spark_streaming_group/offsets/topic_name // /consumers/topic_test_zk_minOffset_zkGroup_group/offsets/topic_test_zk_minOffset_zkGroup/0 val zkTopicPath = s"${topicDirs.consumerOffsetDir}" //zookeeper 的host 和 ip,创建一个 client val zkClient = new ZkClient(zk_host) //查询该路径下是否字节点(默认有字节点为我们自己保存不同 partition 时生成的) val children = zkClient.countChildren(zkTopicPath) var kafkaStream : InputDStream[(String, String)] = null //如果 zookeeper 中有保存 offset,我们会利用这个 offset 作为 kafkaStream 的起始位置 var fromOffsets: Map[TopicAndPartition, Long] = Map() //如果保存过 offset,这里更好的做法,还应该和 kafka 上最小的 offset 做对比,不然会报 OutOfRange 的错误 if (children > 0) { for (i <- 0 until children) { val topic2 = List(topic) val req = new TopicMetadataRequest(topic2, 0) // 第一个参数是 kafka broker 的host,第二个是 port val getLeaderConsumer = new SimpleConsumer("192.168.1.244", 6667, 10000, 10000, "OffsetLookup") val res = getLeaderConsumer.send(req) val topicMetaOption = res.topicsMetadata.headOption val partitions = topicMetaOption match { // 将结果转化为 partition -> leader 的映射关系 case Some(tm) => tm.partitionsMetadata.map(pm => (pm.partitionId, pm.leader.get.host)).toMap[Int, String] case None => Map[Int, String]() } //去出分片对应的leader host val brokerLeaderHost = partitions.get(i).toString.replace("Some(", "").replace(")","") val partitionOffset = zkClient.readData[String](s"${zkTopicPath}/${i}") val tp = TopicAndPartition(topic, i) val requestMin = OffsetRequest(Map(tp -> PartitionOffsetRequestInfo(OffsetRequest.EarliestTime, 1))) val consumerMin = new SimpleConsumer(brokerLeaderHost, 6667, 10000, 10000, "getMinOffset") val curOffsets = consumerMin.getOffsetsBefore(requestMin).partitionErrorAndOffsets(tp).offsets var nextOffset = partitionOffset.toLong // 通过比较从 kafka 上该 partition 的最小 offset 和 zk 上保存的 offset,进行选择 if (curOffsets.length > 0 && nextOffset < curOffsets.head) { nextOffset = curOffsets.head } //设置正确的 offset,这里将 nextOffset 设置为 0(0 只是一个特殊值),可以观察到 offset 过期的想想 fromOffsets += (tp -> nextOffset) println("@@@@@@ topic[" + topic + "] partition[" + i + "] offset[" + partitionOffset + "] @@@@@@") } //这个会将 kafka 的消息进行 transform,最终 kafak 的数据都会变成 (topic_name, message) 这样的 tuple val messageHandler = (mmd : MessageAndMetadata[String, String]) => (mmd.topic, mmd.message()) kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParam, fromOffsets, messageHandler) } else { //如果未保存,根据 kafkaParam 的配置使用最新或者最旧的 offset kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParam, topics) } var offsetRanges = Array[OffsetRange]() //得到该 rdd 对应 kafka 的消息的 offset kafkaStream.transform{ rdd => offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges rdd }.foreachRDD { rdd => //.map(msg => Utils.msgDecode(msg)) for (o <- offsetRanges) { val zkPath = s"${zkTopicPath}/${o.partition}" //将该 partition 的 offset 保存到 zookeeper ZkUtils.updatePersistentPath(zkClient, zkPath, o.fromOffset.toString) println(s"@@@@@@ topic ${o.topic} partition ${o.partition} fromoffset ${o.fromOffset} untiloffset ${o.untilOffset} #######") } rdd.foreachPartition( message => { while(message.hasNext) { println(s"@^_^@ [" + message.next() + "] @^_^@") } } ) } //开启流式计算 ssc.start() //一直会阻塞,等待退出 ssc.awaitTermination() } }
出现的问题
使用simpleConsumer时报错
Exception in thread "main" java.nio.channels.ClosedChannelException at kafka.network.BlockingChannel.send(BlockingChannel.scala:100) at kafka.consumer.SimpleConsumer.liftedTree1$1(SimpleConsumer.scala:78) at kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:68) at kafka.consumer.SimpleConsumer.getOffsetsBefore(SimpleConsumer.scala:127) at streaming.KafkaLog_local_zk_minOffset$$anonfun$main$1.apply$mcVI$sp(KafkaLog_local_zk_minOffset.scala:64) at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:160) at streaming.KafkaLog_local_zk_minOffset$.main(KafkaLog_local_zk_minOffset.scala:44) at streaming.KafkaLog_local_zk_minOffset.main(KafkaLog_local_zk_minOffset.scala)
解决将Kafka config下的server.properties的参数修改下
num.network.threads=3 zookeeper.connection.timeout.ms=6000
再次尝试即可.