• poj2187(未完、有错)


    凸包求直径(socalled。。)

    采用Graham+Rotating_Calipers,Graham复杂度nlogn,RC算法复杂度n,所以时间复杂度不会很高。

    学习RC算法,可到http://cgm.cs.mcgill.ca/~orm/rotcal.frame.html

    另:http://www.cppblog.com/staryjy/archive/2009/11/19/101412.html

    另外,Graham的过程即将整理。。

    #include <iostream>
    #include <math.h>
    #include <algorithm>
    
    using namespace std;
    
    #define eps 1e-8
    #define zero(x) (((x)>0?(x):-(x))<eps)
    struct point{ double x, y; }p[50005],convex[50005];
    
    //计算cross product (P1-P0)x(P2-P0)
    double xmult(point p1, point p2, point p0){
    	return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);
    }
    int dist2(point a, point b)
    {
    	return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
    }
    //graham算法顺时针构造包含所有共线点的凸包,O(nlogn)
    point p1, p2;
    int graham_cp(const void* a, const void* b){
    	double ret = xmult(*((point*) a), *((point*) b), p1);
    	return zero(ret) ? (xmult(*((point*) a), *((point*) b), p2) > 0 ? 1 : -1) : (ret > 0 ? 1 : -1);
    }
    void _graham(int n, point* p, int& s, point* ch){
    	int i, k = 0;
    	for (p1 = p2 = p[0], i = 1; i<n; p2.x += p[i].x, p2.y += p[i].y, i++)
    		if (p1.y - p[i].y>eps || (zero(p1.y - p[i].y) && p1.x > p[i].x))
    			p1 = p[k = i];
    	p2.x /= n, p2.y /= n;
    	p[k] = p[0], p[0] = p1;
    	qsort(p + 1, n - 1, sizeof(point), graham_cp);
    	for (ch[0] = p[0], ch[1] = p[1], ch[2] = p[2], s = i = 3; i < n; ch[s++] = p[i++])
    		for (; s>2 && xmult(ch[s - 2], p[i], ch[s - 1]) < -eps; s--);
    }
    
    int wipesame_cp(const void *a, const void *b)
    {
    	if ((*(point *) a).y < (*(point *) b).y - eps) return -1;
    	else if ((*(point *) a).y > (*(point *) b).y + eps) return 1;
    	else if ((*(point *) a).x < (*(point *) b).x - eps) return -1;
    	else if ((*(point *) a).x > (*(point *) b).x + eps) return 1;
    	else return 0;
    }
    
    int _wipesame(point * p, int n)
    {
    	int i, k;
    	qsort(p, n, sizeof(point), wipesame_cp);
    	for (k = i = 1; i < n; i++)
    		if (wipesame_cp(p + i, p + i - 1) != 0) p[k++] = p[i];
    	return k;
    }
    
    //构造凸包接口函数,传入原始点集大小n,点集p(p原有顺序被打乱!)
    //返回凸包大小,凸包的点在convex中
    //参数maxsize为1包含共线点,为0不包含共线点,缺省为1
    //参数clockwise为1顺时针构造,为0逆时针构造,缺省为1
    //在输入仅有若干共线点时算法不稳定,可能有此类情况请另行处理!
    int graham(int n, point* p, point* convex, int maxsize = 1, int dir = 1){
    	point* temp = new point[n];
    	int s, i;
    	n = _wipesame(p, n);
    	_graham(n, p, s, temp);
    	for (convex[0] = temp[0], n = 1, i = (dir ? 1 : (s - 1)); dir ? (i < s) : i; i += (dir ? 1 : -1))
    		if (maxsize || !zero(xmult(temp[i - 1], temp[i], temp[(i + 1)%s])))
    			convex[n++] = temp[i];
    	delete []temp;
    	return n;
    }
    
    int rotating_calipers(point *ch, int n)
    {
    	int q = 1, ans = 0;
    	ch[n] = ch[0];
    	for (int p = 0; p < n; p++)
    	{
    		while (xmult(ch[p + 1], ch[q + 1], ch[p]) > xmult(ch[p + 1], ch[q], ch[p]))
    			q = (q + 1)%n;
    		ans = max(ans, max(dist2(ch[p], ch[q]), dist2(ch[p + 1], ch[q + 1])));
    	}
    	return ans;
    }
    int main()
    {
    	int n;
    	cin >> n;
    	for (int i = 0; i < n; i++)
    	{
    		cin >> p[i].x >> p[i].y;
    	}
    	graham(n, p, convex,1,0);
    	cout << rotating_calipers(convex, n) << endl;
    	return 0;
    }


  • 相关阅读:
    [Winform]Media Player com组件应用中遇到的问题
    [Winform]Media Player播放控制面板控制,单击事件截获
    [Winform]Media Player组件全屏播放的设置
    [EF]数据上下文该如何实例化?
    [Winform]在关闭程序后,托盘不会消失的问题
    咏南中间件跨平台解决方案
    硬件中间件
    BASE64使用场景
    DELPHI7 ADO二层升三层新增LINUX服务器方案
    NGINX心跳检测
  • 原文地址:https://www.cnblogs.com/jiangu66/p/3226238.html
Copyright © 2020-2023  润新知