也可以使用我们自己的矩阵运算来实现OpenGL下的glTranslatef相应的旋转变换。需要注意的是OpenGL下的矩阵是列优先存储的。
示例通过矩阵运算使得圆柱或者甜圈自动绕Y轴旋转,可以单击鼠标右键来弹出菜单选择是否显示坐标轴、正视图或者是透视图、是否打印变换矩阵、显示圆柱还是甜圈。程序用到math3d中的矩阵相关函数。由于绘制的坐标轴并未参加矩阵变换,在运行过程中会发现坐标轴并不会在定时器作用下不断旋转。
源代码:
GlutTransformDemo
// GlutTransformDemo.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include <gl/glut.h> #include <math.h> #include "math3d.h" //圆周率宏 #define GL_PI 3.1415f //获取屏幕的宽度 GLint SCREEN_WIDTH=0; GLint SCREEN_HEIGHT=0; //设置程序的窗口大小 GLint windowWidth=400; GLint windowHeight=300; //绕x轴旋转角度 GLfloat xRotAngle=0.0f; //绕y轴旋转角度 GLfloat yRotAngle=0.0f; //受支持的点大小范围 GLfloat sizes[2]; //受支持的点大小增量 GLfloat step; //最大的投影矩阵堆栈深度 GLint iMaxProjectionStackDepth; //最大的模型视图矩阵堆栈深度 GLint iMaxModeviewStackDepth; //最大的纹理矩阵堆栈深度 GLint iMaxTextureStackDepth; GLint iCoordinateaxis=2;//是否显示坐标轴 GLint iProjectionMode=1;//投影模式 GLint iPrintMatrix=1;//是否打印变换矩阵 GLint iCylinder=1;//显示圆柱还是甜圈 void changSize(GLint w,GLint h); void DrawTorus(M3DMatrix44f mTransform){ // 大圆只存在于 xy 平面, // 小圆存在于 xyz 空间中, // 其圆心是大圆圆周上的点。 // 小圆环大圆半径方向为起始旋转一周形成的。 // 由于 z 轴垂直于 xy 平面, // 又因为大圆的半径位于 xy 平面, // 因此,z 轴垂直于大圆的半径(垂直于面,垂直于线), // 因此,z 轴与大圆的半径方向是正交的。 // 小圆位于 z 轴与大圆半径方向形成的平面, // 后面计算具体点的位置是基于上面的描述。 // 大圆半径 GLfloat majorRadius = 55.0f; // 小圆半径 GLfloat minorRadius = 15.0f; // 大圆圆周被切分的点数 GLint numMajor = 50; // 小圆圆周被切分的点数 GLint numMinor = 20; M3DVector3f objectVertex; // Vertex in object/eye space M3DVector3f transformedVertex; // New Transformed vertex // 每个点对应的弧度数 double majorStep = 2.0f*M3D_PI / numMajor; double minorStep = 2.0f*M3D_PI / numMinor; int i, j; // 对于大圆上的点进行迭代 for (i=0; i<numMajor; ++i) { // 第一个点对应的弧度 double a0 = i * majorStep; // 第二个点对应的弧度 double a1 = a0 + majorStep; // 第一个点在 x 与 y 轴上的单位长度 GLfloat x0 = (GLfloat) cos(a0); GLfloat y0 = (GLfloat) sin(a0); // 第二个点在 x 与 y 轴上的单位长度 GLfloat x1 = (GLfloat) cos(a1); GLfloat y1 = (GLfloat) sin(a1); glBegin(GL_TRIANGLE_STRIP); // 对小圆上的点进行迭代 for (j=0; j<=numMinor; ++j) { // 小圆上点对应的弧度 double b = j * minorStep; // 小圆上点在半径方向的单位长度 GLfloat c = (GLfloat) cos(b); // 小圆上点,在xy 平面的分量长度 GLfloat r = minorRadius * c + majorRadius; // 小圆上点在 z 轴上的长度 GLfloat z = minorRadius * (GLfloat) sin(b); // 小圆上点坐标确认的过程:将该点分为在 z 轴 与 大圆半径方向,由于大圆半径只存在于 xy 平面,就相对容易求到 x , y 坐标。 // First point objectVertex[0] = x0*r;// 小圆上点对应的 x 坐标 objectVertex[1] = y0*r;// 小圆上点对应的 y 坐标 objectVertex[2] = z; // 小圆上点对应的 z 坐标 m3dTransformVector3(transformedVertex, objectVertex, mTransform); glVertex3fv(transformedVertex); // Second point objectVertex[0] = x1*r; objectVertex[1] = y1*r; objectVertex[2] = z; m3dTransformVector3(transformedVertex, objectVertex, mTransform); glVertex3fv(transformedVertex); } glEnd(); } } void DrawCylinder(M3DMatrix44f mTransform){ // 大圆半径 GLfloat majorRadius = 55.0f; // 大圆圆周被切分的点数 GLint numMajor = 100; M3DVector3f objectVertex; // Vertex in object/eye space M3DVector3f transformedVertex; // New Transformed vertex // 每个点对应的弧度数 double majorStep = 2.0f*M3D_PI / numMajor; glBegin(GL_TRIANGLE_STRIP); // 对于大圆上的点进行迭代 for (int i=0; i<=numMajor; ++i) { // 第一个点对应的弧度 double a0 = i * majorStep; // 第二个点对应的弧度 double a1 = a0 - majorStep; // 第一个点在 x 与 y 轴上的单位长度 GLfloat x0 = (GLfloat) cos(a0); GLfloat y0 = (GLfloat) sin(a0); // 第二个点在 x 与 y 轴上的单位长度 GLfloat x1 = (GLfloat) cos(a1); GLfloat y1 = (GLfloat) sin(a1); // First point objectVertex[0] = x0*majorRadius;// 小圆上点对应的 x 坐标 objectVertex[1] = y0*majorRadius;// 小圆上点对应的 y 坐标 objectVertex[2] = 50.0f; // 小圆上点对应的 z 坐标 m3dTransformVector3(transformedVertex, objectVertex, mTransform); glVertex3fv(transformedVertex); // Second point objectVertex[0] = x1*majorRadius; objectVertex[1] = y1*majorRadius; objectVertex[2] = -50.0f; m3dTransformVector3(transformedVertex, objectVertex, mTransform); glVertex3fv(transformedVertex); } glEnd(); } //菜单回调函数 void processMenu(int value){ switch(value){ case 1: iCoordinateaxis=1; break; case 2: iCoordinateaxis=2; break; case 3: iProjectionMode=1; //强制调用窗口大小变化回调函数,更改投影模式为正交投影 changSize(glutGet(GLUT_WINDOW_WIDTH),glutGet(GLUT_WINDOW_HEIGHT)); break; case 4: iProjectionMode=2; //强制调用窗口大小变化回调函数,更改投影模式为透视投影 changSize(glutGet(GLUT_WINDOW_WIDTH),glutGet(GLUT_WINDOW_HEIGHT)); break; case 5: iPrintMatrix=1; break; case 6: iPrintMatrix=2; break; case 7: iCylinder=1; break; case 8: iCylinder=2; break; default: break; } //重新绘制 glutPostRedisplay(); } //显示回调函数 void renderScreen(void){ M3DMatrix44f transformationMatrix; // Storeage for rotation matrix static GLfloat yRot = 0.0f; // Rotation angle for animation yRot += 0.5f; //将窗口颜色清理为黑色 glClearColor(0.0f, 0.0f, 0.0f, 0.0f); //把整个窗口清理为当前清理颜色:黑色;清除深度缓冲区。 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); //将当前Matrix状态入栈 glPushMatrix(); if(2==iProjectionMode) glTranslatef(0.0f, 0.0f, -250.0f); //透视投影为便于观察整个坐标系往内移动250个单位 //坐标系绕x轴旋转xRotAngle glRotatef(xRotAngle,1.0f,0.0f,0.0f); //坐标系绕y轴旋转yRotAngle glRotatef(yRotAngle,0.0f,1.0f,0.0f); //进行平滑处理 glEnable(GL_POINT_SMOOTH); glHint(GL_POINT_SMOOTH,GL_NICEST); glEnable(GL_LINE_SMOOTH); glHint(GL_LINE_SMOOTH,GL_NICEST); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); if(1==iCoordinateaxis){ glColor3f(1.0f,1.0f,1.0f); glBegin(GL_LINES); glVertex3f(-90.0f,00.0f,0.0f); glVertex3f(90.0f,0.0f,0.0f); glVertex3f(0.0f,-90.0f,0.0f); glVertex3f(0.0f,90.0f,0.0f); glVertex3f(0.0f,0.0f,-90.0f); glVertex3f(0.0f,0.0f,90.0f); glEnd(); glPushMatrix(); glTranslatef(90.0f,0.0f,0.0f); glRotatef(90.0f,0.0f,1.0f,0.0f); glutSolidCone(3,6,10,10); glPopMatrix(); glPushMatrix(); glTranslatef(0.0f,90.0f,0.0f); glRotatef(-90.0f,1.0f,0.0f,0.0f); glutSolidCone(3,6,10,10); glPopMatrix(); glPushMatrix(); glTranslatef(0.0f,0.0f,90.0f); glRotatef(70.0f,0.0f,0.0f,1.0f); glutSolidCone(3,6,10,10); glPopMatrix(); } glColor3f(0.5f,0.5f,1.0f); memset(transformationMatrix,0,sizeof(transformationMatrix)); //打印变换矩阵 if(2==iPrintMatrix){ printf("-------------------------------------- "); for(int i=0;i<4;i++){ for(int j=0;j<4;j++){ printf("%9.6f ",transformationMatrix[4*j+i]); } printf(" "); } } m3dRotationMatrix44(transformationMatrix, m3dDegToRad(yRot), 0.0f, 1.0f, 0.0f); //transformationMatrix[12]、transformationMatrix[13] = 0.0f、transformationMatrix[14] = 0.0f是平移参数,分别代表x、y、 z轴的偏移参数。 //transformationMatrix[15]代表缩放为原来的1/transformationMatrix[15] transformationMatrix[12] = 0.0f; transformationMatrix[13] = 0.0f; transformationMatrix[14] = 0.0f; transformationMatrix[15] = 2.0f; //打印变换矩阵 if(2==iPrintMatrix){ printf("-------------------------------------- "); for(int i=0;i<4;i++){ for(int j=0;j<4;j++){ printf("%9.6f ",transformationMatrix[4*j+i]); } printf(" "); } } if(1==iCylinder) DrawCylinder(transformationMatrix); else DrawTorus(transformationMatrix); //恢复压入栈的Matrix glPopMatrix(); //交换两个缓冲区的指针 glutSwapBuffers(); } //设置Redering State void setupRederingState(void){ glEnable(GL_DEPTH_TEST); //使能深度测试 glFrontFace(GL_CCW); //多边形逆时针方向为正面 //glEnable(GL_CULL_FACE); //不显示背面 glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);//背面正面均使用线填充 //设置清理颜色为黑色 glClearColor(0.0f,0.0,0.0,1.0f); //设置绘画颜色为绿色 glColor3f(1.0f,1.0f,0.0f); //使能深度测试 glEnable(GL_DEPTH_TEST); //获取受支持的点大小范围 glGetFloatv(GL_POINT_SIZE_RANGE,sizes); //获取受支持的点大小增量 glGetFloatv(GL_POINT_SIZE_GRANULARITY,&step); //获取最大的投影矩阵堆栈深度 glGetIntegerv( GL_MAX_PROJECTION_STACK_DEPTH,&iMaxProjectionStackDepth); //获取最大的模型视图矩阵堆栈深度 glGetIntegerv( GL_MAX_MODELVIEW_STACK_DEPTH,&iMaxModeviewStackDepth); //获取最大的纹理矩阵堆栈深度 glGetIntegerv( GL_MAX_TEXTURE_STACK_DEPTH,&iMaxTextureStackDepth); printf("point size range:%f-%f ",sizes[0],sizes[1]); printf("point step:%f ",step); printf("iMaxProjectionStackDepth=%d ",iMaxProjectionStackDepth); printf("iMaxModeviewStackDepth=%d ",iMaxModeviewStackDepth); printf("iMaxTextureStackDepth=%d ",iMaxTextureStackDepth); } //窗口大小变化回调函数 void changSize(GLint w,GLint h){ //横宽比率 GLfloat ratio; //设置坐标系为x(-100.0f,100.0f)、y(-100.0f,100.0f)、z(-100.0f,100.0f) GLfloat coordinatesize=100.0f; //窗口宽高为零直接返回 if((w==0)||(h==0)) return; //设置视口和窗口大小一致 glViewport(0,0,w,h); //对投影矩阵应用随后的矩阵操作 glMatrixMode(GL_PROJECTION); //重置当前指定的矩阵为单位矩阵 glLoadIdentity(); ratio=(GLfloat)w/(GLfloat)h; //正交投影 if(1==iProjectionMode){ printf("glOrtho "); if(w<h) glOrtho(-coordinatesize,coordinatesize,-coordinatesize/ratio,coordinatesize/ratio,-coordinatesize,coordinatesize); else glOrtho(-coordinatesize*ratio,coordinatesize*ratio,-coordinatesize,coordinatesize,-coordinatesize,coordinatesize); //当前矩阵设置为模型视图矩阵 glMatrixMode(GL_MODELVIEW); //重置当前指定的矩阵为单位矩阵 glLoadIdentity(); } else{ printf("gluPerspective "); gluPerspective(45,ratio,10.0f,500.0f); //当前矩阵设置为模型视图矩阵 glMatrixMode(GL_MODELVIEW); //重置当前指定的矩阵为单位矩阵 glLoadIdentity(); } } //按键输入处理回调函数 void specialKey(int key,int x,int y){ if(key==GLUT_KEY_UP){ xRotAngle-=5.0f; } else if(key==GLUT_KEY_DOWN){ xRotAngle+=5.0f; } else if(key==GLUT_KEY_LEFT){ yRotAngle-=5.0f; } else if(key==GLUT_KEY_RIGHT){ yRotAngle+=5.0f; } //重新绘制 glutPostRedisplay(); } void timerFunc(int value) { glutPostRedisplay(); glutTimerFunc(10, timerFunc, 1); } int main(int argc, char* argv[]) { //菜单 GLint iMainMenu; GLint iCoordinateaxisMenu; GLint iOrthoOrPerspectMenu; GLint iPrintmatrix; GLint iCylinderOrTorus; //初始化glut glutInit(&argc,argv); //使用双缓冲区、深度缓冲区。 glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGBA|GLUT_DEPTH); //获取系统的宽像素 SCREEN_WIDTH=glutGet(GLUT_SCREEN_WIDTH); //获取系统的高像素 SCREEN_HEIGHT=glutGet(GLUT_SCREEN_HEIGHT); //创建窗口,窗口名字为OpenGL Transform Demo glutCreateWindow("OpenGL Transform Demo"); //设置窗口大小 glutReshapeWindow(windowWidth,windowHeight); //窗口居中显示 glutPositionWindow((SCREEN_WIDTH-windowWidth)/2,(SCREEN_HEIGHT-windowHeight)/2); //窗口大小变化时的处理函数 glutReshapeFunc(changSize); //设置显示回调函数 glutDisplayFunc(renderScreen); //设置按键输入处理回调函数 glutSpecialFunc(specialKey); //菜单回调函数 iCoordinateaxisMenu=glutCreateMenu(processMenu); //添加菜单 glutAddMenuEntry("Display coordinate axis",1); glutAddMenuEntry("Don't dispaly coordinate axis",2); iOrthoOrPerspectMenu=glutCreateMenu(processMenu); glutAddMenuEntry("Ortho",3); glutAddMenuEntry("Perspect",4); iPrintmatrix=glutCreateMenu(processMenu); glutAddMenuEntry("Don't print Matrix",5); glutAddMenuEntry("Print Matrix",6); iCylinderOrTorus=glutCreateMenu(processMenu); glutAddMenuEntry("Cylinder",7); glutAddMenuEntry("Torus",8); iMainMenu=glutCreateMenu(processMenu); glutAddSubMenu("Whether Display coordinate axis",iCoordinateaxisMenu); glutAddSubMenu("Ortho Or Perspect",iOrthoOrPerspectMenu); glutAddSubMenu("Whether Print Matrix",iPrintmatrix); glutAddSubMenu("Cylinder or torus",iCylinderOrTorus); //将菜单榜定到鼠标右键上 glutAttachMenu(GLUT_RIGHT_BUTTON); glutTimerFunc(10,timerFunc, 1); //设置全局渲染参数 setupRederingState(); glutMainLoop(); return 0; }
math3d.h
// Math3d.h // Header file for the Math3d library. The C-Runtime has math.h, this file and the // accompanying math.c are meant to suppliment math.h by adding geometry/math routines // useful for graphics, simulation, and physics applications (3D stuff). // Richard S. Wright Jr. #ifndef _MATH3D_LIBRARY__ #define _MATH3D_LIBRARY__ #include <math.h> #include <memory.h> /////////////////////////////////////////////////////////////////////////////// // Data structures and containers // Much thought went into how these are declared. Many libraries declare these // as structures with x, y, z data members. However structure alignment issues // could limit the portability of code based on such structures, or the binary // compatibility of data files (more likely) that contain such structures across // compilers/platforms. Arrays are always tightly packed, and are more efficient // for moving blocks of data around (usually). typedef float M3DVector3f[3]; // Vector of three floats (x, y, z) typedef double M3DVector3d[3]; // Vector of three doubles (x, y, z) typedef float M3DVector4f[4]; // Lesser used... Do we really need these? typedef double M3DVector4d[4]; // Yes, occasionaly typedef float M3DVector2f[2]; // 3D points = 3D Vectors, but we need a typedef double M3DVector2d[2]; // 2D representations sometimes... (x,y) order // 3x3 matrix - column major. X vector is 0, 1, 2, etc. // 0 3 6 // 1 4 7 // 2 5 8 typedef float M3DMatrix33f[9]; // A 3 x 3 matrix, column major (floats) - OpenGL Style typedef double M3DMatrix33d[9]; // A 3 x 3 matrix, column major (doubles) - OpenGL Style // 4x4 matrix - column major. X vector is 0, 1, 2, etc. // 0 4 8 12 // 1 5 9 13 // 2 6 10 14 // 3 7 11 15 typedef float M3DMatrix44f[16]; // A 4 X 4 matrix, column major (floats) - OpenGL style typedef double M3DMatrix44d[16]; // A 4 x 4 matrix, column major (doubles) - OpenGL style /////////////////////////////////////////////////////////////////////////////// // Useful constants #define M3D_PI (3.14159265358979323846) #define M3D_2PI (2.0 * M3D_PI) #define M3D_PI_DIV_180 (0.017453292519943296) #define M3D_INV_PI_DIV_180 (57.2957795130823229) /////////////////////////////////////////////////////////////////////////////// // Useful shortcuts and macros // Radians are king... but we need a way to swap back and forth #define m3dDegToRad(x) ((x)*M3D_PI_DIV_180) #define m3dRadToDeg(x) ((x)*M3D_INV_PI_DIV_180) // Hour angles #define m3dHrToDeg(x) ((x) * (1.0 / 15.0)) #define m3dHrToRad(x) m3dDegToRad(m3dHrToDeg(x)) #define m3dDegToHr(x) ((x) * 15.0)) #define m3dRadToHr(x) m3dDegToHr(m3dRadToDeg(x)) // Returns the same number if it is a power of // two. Returns a larger integer if it is not a // power of two. The larger integer is the next // highest power of two. inline unsigned int m3dIsPOW2(unsigned int iValue) { unsigned int nPow2 = 1; while(iValue > nPow2) nPow2 = (nPow2 << 1); return nPow2; } /////////////////////////////////////////////////////////////////////////////// // Inline accessor functions for people who just can't count to 3 - Vectors #define m3dGetVectorX(v) (v[0]) #define m3dGetVectorY(v) (v[1]) #define m3dGetVectorZ(v) (v[2]) #define m3dGetVectorW(v) (v[3]) #define m3dSetVectorX(v, x) ((v)[0] = (x)) #define m3dSetVectorY(v, y) ((v)[1] = (y)) #define m3dSetVectorZ(v, z) ((v)[2] = (z)) #define m3dSetVectorW(v, w) ((v)[3] = (w)) /////////////////////////////////////////////////////////////////////////////// // Inline vector functions // Load Vector with (x, y, z, w). inline void m3dLoadVector2(M3DVector2f v, float x, float y) { v[0] = x; v[1] = y; } inline void m3dLoadVector2(M3DVector2d v, float x, float y) { v[0] = x; v[1] = y; } inline void m3dLoadVector3(M3DVector3f v, float x, float y, float z) { v[0] = x; v[1] = y; v[2] = z; } inline void m3dLoadVector3(M3DVector3d v, double x, double y, double z) { v[0] = x; v[1] = y; v[2] = z; } inline void m3dLoadVector4(M3DVector4f v, float x, float y, float z, float w) { v[0] = x; v[1] = y; v[2] = z; v[3] = w;} inline void m3dLoadVector4(M3DVector4d v, double x, double y, double z, double w) { v[0] = x; v[1] = y; v[2] = z; v[3] = w;} //////////////////////////////////////////////////////////////////////////////// // Copy vector src into vector dst inline void m3dCopyVector2(M3DVector2f dst, const M3DVector2f src) { memcpy(dst, src, sizeof(M3DVector2f)); } inline void m3dCopyVector2(M3DVector2d dst, const M3DVector2d src) { memcpy(dst, src, sizeof(M3DVector2d)); } inline void m3dCopyVector3(M3DVector3f dst, const M3DVector3f src) { memcpy(dst, src, sizeof(M3DVector3f)); } inline void m3dCopyVector3(M3DVector3d dst, const M3DVector3d src) { memcpy(dst, src, sizeof(M3DVector3d)); } inline void m3dCopyVector4(M3DVector4f dst, const M3DVector4f src) { memcpy(dst, src, sizeof(M3DVector4f)); } inline void m3dCopyVector4(M3DVector4d dst, const M3DVector4d src) { memcpy(dst, src, sizeof(M3DVector4d)); } //////////////////////////////////////////////////////////////////////////////// // Add Vectors (r, a, b) r = a + b inline void m3dAddVectors2(M3DVector2f r, const M3DVector2f a, const M3DVector2f b) { r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; } inline void m3dAddVectors2(M3DVector2d r, const M3DVector2d a, const M3DVector2d b) { r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; } inline void m3dAddVectors3(M3DVector3f r, const M3DVector3f a, const M3DVector3f b) { r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; r[2] = a[2] + b[2]; } inline void m3dAddVectors3(M3DVector3d r, const M3DVector3d a, const M3DVector3d b) { r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; r[2] = a[2] + b[2]; } inline void m3dAddVectors4(M3DVector4f r, const M3DVector4f a, const M3DVector4f b) { r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; r[2] = a[2] + b[2]; r[3] = a[3] + b[3]; } inline void m3dAddVectors4(M3DVector4d r, const M3DVector4d a, const M3DVector4d b) { r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; r[2] = a[2] + b[2]; r[3] = a[3] + b[3]; } //////////////////////////////////////////////////////////////////////////////// // Subtract Vectors (r, a, b) r = a - b inline void m3dSubtractVectors2(M3DVector2f r, const M3DVector2f a, const M3DVector2f b) { r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; } inline void m3dSubtractVectors2(M3DVector2d r, const M3DVector2d a, const M3DVector2d b) { r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; } inline void m3dSubtractVectors3(M3DVector3f r, const M3DVector3f a, const M3DVector3f b) { r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; r[2] = a[2] - b[2]; } inline void m3dSubtractVectors3(M3DVector3d r, const M3DVector3d a, const M3DVector3d b) { r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; r[2] = a[2] - b[2]; } inline void m3dSubtractVectors4(M3DVector4f r, const M3DVector4f a, const M3DVector4f b) { r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; r[2] = a[2] - b[2]; r[3] = a[3] - b[3]; } inline void m3dSubtractVectors4(M3DVector4d r, const M3DVector4d a, const M3DVector4d b) { r[0] = a[0] - b[0]; r[1] = a[1] - b[1]; r[2] = a[2] - b[2]; r[3] = a[3] - b[3]; } /////////////////////////////////////////////////////////////////////////////////////// // Scale Vectors (in place) inline void m3dScaleVector2(M3DVector2f v, float scale) { v[0] *= scale; v[1] *= scale; } inline void m3dScaleVector2(M3DVector2d v, double scale) { v[0] *= scale; v[1] *= scale; } inline void m3dScaleVector3(M3DVector3f v, float scale) { v[0] *= scale; v[1] *= scale; v[2] *= scale; } inline void m3dScaleVector3(M3DVector3d v, double scale) { v[0] *= scale; v[1] *= scale; v[2] *= scale; } inline void m3dScaleVector4(M3DVector4f v, float scale) { v[0] *= scale; v[1] *= scale; v[2] *= scale; v[3] *= scale; } inline void m3dScaleVector4(M3DVector4d v, double scale) { v[0] *= scale; v[1] *= scale; v[2] *= scale; v[3] *= scale; } ////////////////////////////////////////////////////////////////////////////////////// // Cross Product // u x v = result // We only need one version for floats, and one version for doubles. A 3 component // vector fits in a 4 component vector. If M3DVector4d or M3DVector4f are passed // we will be OK because 4th component is not used. inline void m3dCrossProduct(M3DVector3f result, const M3DVector3f u, const M3DVector3f v) { result[0] = u[1]*v[2] - v[1]*u[2]; result[1] = -u[0]*v[2] + v[0]*u[2]; result[2] = u[0]*v[1] - v[0]*u[1]; } inline void m3dCrossProduct(M3DVector3d result, const M3DVector3d u, const M3DVector3d v) { result[0] = u[1]*v[2] - v[1]*u[2]; result[1] = -u[0]*v[2] + v[0]*u[2]; result[2] = u[0]*v[1] - v[0]*u[1]; } ////////////////////////////////////////////////////////////////////////////////////// // Dot Product, only for three component vectors // return u dot v inline float m3dDotProduct(const M3DVector3f u, const M3DVector3f v) { return u[0]*v[0] + u[1]*v[1] + u[2]*v[2]; } inline double m3dDotProduct(const M3DVector3d u, const M3DVector3d v) { return u[0]*v[0] + u[1]*v[1] + u[2]*v[2]; } ////////////////////////////////////////////////////////////////////////////////////// // Angle between vectors, only for three component vectors. Angle is in radians... inline float m3dGetAngleBetweenVectors(const M3DVector3f u, const M3DVector3f v) { float dTemp = m3dDotProduct(u, v); return float(acos(double(dTemp))); } inline double m3dGetAngleBetweenVectors(const M3DVector3d u, const M3DVector3d v) { double dTemp = m3dDotProduct(u, v); return acos(dTemp); } ////////////////////////////////////////////////////////////////////////////////////// // Get Square of a vectors length // Only for three component vectors inline float m3dGetVectorLengthSquared(const M3DVector3f u) { return (u[0] * u[0]) + (u[1] * u[1]) + (u[2] * u[2]); } inline double m3dGetVectorLengthSquared(const M3DVector3d u) { return (u[0] * u[0]) + (u[1] * u[1]) + (u[2] * u[2]); } ////////////////////////////////////////////////////////////////////////////////////// // Get lenght of vector // Only for three component vectors. inline float m3dGetVectorLength(const M3DVector3f u) { return float(sqrt(double(m3dGetVectorLengthSquared(u)))); } inline double m3dGetVectorLength(const M3DVector3d u) { return sqrt(m3dGetVectorLengthSquared(u)); } ////////////////////////////////////////////////////////////////////////////////////// // Normalize a vector // Scale a vector to unit length. Easy, just scale the vector by it's length inline void m3dNormalizeVector(M3DVector3f u) { m3dScaleVector3(u, 1.0f / m3dGetVectorLength(u)); } inline void m3dNormalizeVector(M3DVector3d u) { m3dScaleVector3(u, 1.0 / m3dGetVectorLength(u)); } ////////////////////////////////////////////////////////////////////////////////////// // Get the distance between two points. The distance between two points is just // the magnitude of the difference between two vectors // Located in math.cpp float m3dGetDistanceSquared(const M3DVector3f u, const M3DVector3f v); double m3dGetDistanceSquared(const M3DVector3d u, const M3DVector3d v); inline double m3dGetDistance(const M3DVector3d u, const M3DVector3d v) { return sqrt(m3dGetDistanceSquared(u, v)); } inline float m3dGetDistance(const M3DVector3f u, const M3DVector3f v) { return float(sqrt(m3dGetDistanceSquared(u, v))); } inline float m3dGetMagnitudeSquared(const M3DVector3f u) { return u[0]*u[0] + u[1]*u[1] + u[2]*u[2]; } inline double m3dGetMagnitudeSquared(const M3DVector3d u) { return u[0]*u[0] + u[1]*u[1] + u[2]*u[2]; } inline float m3dGetMagnitude(const M3DVector3f u) { return float(sqrt(m3dGetMagnitudeSquared(u))); } inline double m3dGetMagnitude(const M3DVector3d u) { return sqrt(m3dGetMagnitudeSquared(u)); } ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Matrix functions // Both floating point and double precision 3x3 and 4x4 matricies are supported. // No support is included for arbitrarily dimensioned matricies on purpose, since // the 3x3 and 4x4 matrix routines are the most common for the purposes of this // library. Matrices are column major, like OpenGL matrices. // Unlike the vector functions, some of these are going to have to not be inlined, // although many will be. // Copy Matrix // Brain-dead memcpy inline void m3dCopyMatrix33(M3DMatrix33f dst, const M3DMatrix33f src) { memcpy(dst, src, sizeof(M3DMatrix33f)); } inline void m3dCopyMatrix33(M3DMatrix33d dst, const M3DMatrix33d src) { memcpy(dst, src, sizeof(M3DMatrix33d)); } inline void m3dCopyMatrix44(M3DMatrix44f dst, const M3DMatrix44f src) { memcpy(dst, src, sizeof(M3DMatrix44f)); } inline void m3dCopyMatrix44(M3DMatrix44d dst, const M3DMatrix44d src) { memcpy(dst, src, sizeof(M3DMatrix44d)); } // LoadIdentity // Implemented in Math3d.cpp void m3dLoadIdentity33(M3DMatrix33f m); void m3dLoadIdentity33(M3DMatrix33d m); void m3dLoadIdentity44(M3DMatrix44f m); void m3dLoadIdentity44(M3DMatrix44d m); ///////////////////////////////////////////////////////////////////////////// // Get/Set Column. inline void m3dGetMatrixColumn33(M3DVector3f dst, const M3DMatrix33f src, int column) { memcpy(dst, src + (3 * column), sizeof(float) * 3); } inline void m3dGetMatrixColumn33(M3DVector3d dst, const M3DMatrix33d src, int column) { memcpy(dst, src + (3 * column), sizeof(double) * 3); } inline void m3dSetMatrixColumn33(M3DMatrix33f dst, const M3DVector3f src, int column) { memcpy(dst + (3 * column), src, sizeof(float) * 3); } inline void m3dSetMatrixColumn33(M3DMatrix33d dst, const M3DVector3d src, int column) { memcpy(dst + (3 * column), src, sizeof(double) * 3); } inline void m3dGetMatrixColumn44(M3DVector4f dst, const M3DMatrix44f src, int column) { memcpy(dst, src + (4 * column), sizeof(float) * 4); } inline void m3dGetMatrixColumn44(M3DVector4d dst, const M3DMatrix44d src, int column) { memcpy(dst, src + (4 * column), sizeof(double) * 4); } inline void m3dSetMatrixColumn44(M3DMatrix44f dst, const M3DVector4f src, int column) { memcpy(dst + (4 * column), src, sizeof(float) * 4); } inline void m3dSetMatrixColumn44(M3DMatrix44d dst, const M3DVector4d src, int column) { memcpy(dst + (4 * column), src, sizeof(double) * 4); } // Get/Set row purposely omitted... use the functions below. // I don't think row vectors are useful for column major ordering... // If I'm wrong, add them later. ////////////////////////////////////////////////////////////////////////////// // Get/Set RowCol - Remember column major ordering... // Provides for element addressing inline void m3dSetMatrixRowCol33(M3DMatrix33f m, int row, int col, float value) { m[(col * 3) + row] = value; } inline float m3dGetMatrixRowCol33(const M3DMatrix33f m, int row, int col) { return m[(col * 3) + row]; } inline void m3dSetMatrixRowCol33(M3DMatrix33d m, int row, int col, double value) { m[(col * 3) + row] = value; } inline double m3dGetMatrixRowCol33(const M3DMatrix33d m, int row, int col) { return m[(col * 3) + row]; } inline void m3dSetMatrixRowCol44(M3DMatrix44f m, int row, int col, float value) { m[(col * 4) + row] = value; } inline float m3dGetMatrixRowCol44(const M3DMatrix44f m, int row, int col) { return m[(col * 4) + row]; } inline void m3dSetMatrixRowCol44(M3DMatrix44d m, int row, int col, double value) { m[(col * 4) + row] = value; } inline double m3dGetMatrixRowCol44(const M3DMatrix44d m, int row, int col) { return m[(col * 4) + row]; } /////////////////////////////////////////////////////////////////////////////// // Extract a rotation matrix from a 4x4 matrix // Extracts the rotation matrix (3x3) from a 4x4 matrix inline void m3dExtractRotation(M3DMatrix33f dst, const M3DMatrix44f src) { memcpy(dst, src, sizeof(float) * 3); // X column memcpy(dst + 3, src + 4, sizeof(float) * 3); // Y column memcpy(dst + 6, src + 8, sizeof(float) * 3); // Z column } // Ditto above, but for doubles inline void m3dExtractRotation(M3DMatrix33d dst, const M3DMatrix44d src) { memcpy(dst, src, sizeof(double) * 3); // X column memcpy(dst + 3, src + 4, sizeof(double) * 3); // Y column memcpy(dst + 6, src + 8, sizeof(double) * 3); // Z column } // Inject Rotation (3x3) into a full 4x4 matrix... inline void m3dInjectRotation(M3DMatrix44f dst, const M3DMatrix33f src) { memcpy(dst, src, sizeof(float) * 4); memcpy(dst + 4, src + 4, sizeof(float) * 4); memcpy(dst + 8, src + 8, sizeof(float) * 4); } // Ditto above for doubles inline void m3dInjectRotation(M3DMatrix44d dst, const M3DMatrix33d src) { memcpy(dst, src, sizeof(double) * 4); memcpy(dst + 4, src + 4, sizeof(double) * 4); memcpy(dst + 8, src + 8, sizeof(double) * 4); } //////////////////////////////////////////////////////////////////////////////// // MultMatrix // Implemented in Math.cpp void m3dMatrixMultiply44(M3DMatrix44f product, const M3DMatrix44f a, const M3DMatrix44f b); void m3dMatrixMultiply44(M3DMatrix44d product, const M3DMatrix44d a, const M3DMatrix44d b); void m3dMatrixMultiply33(M3DMatrix33f product, const M3DMatrix33f a, const M3DMatrix33f b); void m3dMatrixMultiply33(M3DMatrix33d product, const M3DMatrix33d a, const M3DMatrix33d b); // Transform - Does rotation and translation via a 4x4 matrix. Transforms // a point or vector. // By-the-way __inline means I'm asking the compiler to do a cost/benefit analysis. If // these are used frequently, they may not be inlined to save memory. I'm experimenting // with this.... __inline void m3dTransformVector3(M3DVector3f vOut, const M3DVector3f v, const M3DMatrix44f m) { vOut[0] = m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12];// * v[3]; vOut[1] = m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13];// * v[3]; vOut[2] = m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14];// * v[3]; //vOut[3] = m[3] * v[0] + m[7] * v[1] + m[11] * v[2] + m[15] * v[3]; } // Ditto above, but for doubles __inline void m3dTransformVector3(M3DVector3d vOut, const M3DVector3d v, const M3DMatrix44d m) { vOut[0] = m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12];// * v[3]; vOut[1] = m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13];// * v[3]; vOut[2] = m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14];// * v[3]; //vOut[3] = m[3] * v[0] + m[7] * v[1] + m[11] * v[2] + m[15] * v[3]; } __inline void m3dTransformVector4(M3DVector4f vOut, const M3DVector4f v, const M3DMatrix44f m) { vOut[0] = m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12] * v[3]; vOut[1] = m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13] * v[3]; vOut[2] = m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14] * v[3]; vOut[3] = m[3] * v[0] + m[7] * v[1] + m[11] * v[2] + m[15] * v[3]; } // Ditto above, but for doubles __inline void m3dTransformVector4(M3DVector4d vOut, const M3DVector4d v, const M3DMatrix44d m) { vOut[0] = m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12] * v[3]; vOut[1] = m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13] * v[3]; vOut[2] = m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14] * v[3]; vOut[3] = m[3] * v[0] + m[7] * v[1] + m[11] * v[2] + m[15] * v[3]; } // Just do the rotation, not the translation... this is usually done with a 3x3 // Matrix. __inline void m3dRotateVector(M3DVector3f vOut, const M3DVector3f p, const M3DMatrix33f m) { vOut[0] = m[0] * p[0] + m[3] * p[1] + m[6] * p[2]; vOut[1] = m[1] * p[0] + m[4] * p[1] + m[7] * p[2]; vOut[2] = m[2] * p[0] + m[5] * p[1] + m[8] * p[2]; } // Ditto above, but for doubles __inline void m3dRotateVector(M3DVector3d vOut, const M3DVector3d p, const M3DMatrix33d m) { vOut[0] = m[0] * p[0] + m[3] * p[1] + m[6] * p[2]; vOut[1] = m[1] * p[0] + m[4] * p[1] + m[7] * p[2]; vOut[2] = m[2] * p[0] + m[5] * p[1] + m[8] * p[2]; } // Scale a matrix (I don't beleive in Scaling matricies ;-) // Yes, it's faster to loop backwards... These could be // unrolled... but eh... if you find this is a bottleneck, // then you should unroll it yourself inline void m3dScaleMatrix33(M3DMatrix33f m, float scale) { for(int i = 8; i >=0; i--) m[i] *= scale; } inline void m3dScaleMatrix33(M3DMatrix33d m, double scale) { for(int i = 8; i >=0; i--) m[i] *= scale; } inline void m3dScaleMatrix44(M3DMatrix44f m, float scale) { for(int i = 15; i >=0; i--) m[i] *= scale; } inline void m3dScaleMatrix44(M3DMatrix44d m, double scale) { for(int i = 15; i >=0; i--) m[i] *= scale; } // Create a Rotation matrix // Implemented in math.cpp void m3dRotationMatrix33(M3DMatrix33f m, float angle, float x, float y, float z); void m3dRotationMatrix33(M3DMatrix33d m, double angle, double x, double y, double z); void m3dRotationMatrix44(M3DMatrix44f m, float angle, float x, float y, float z); void m3dRotationMatrix44(M3DMatrix44d m, double angle, double x, double y, double z); // Create a Translation matrix. Only 4x4 matrices have translation components inline void m3dTranslationMatrix44(M3DMatrix44f m, float x, float y, float z) { m3dLoadIdentity44(m); m[12] = x; m[13] = y; m[14] = z; } inline void m3dTranslationMatrix44(M3DMatrix44d m, double x, double y, double z) { m3dLoadIdentity44(m); m[12] = x; m[13] = y; m[14] = z; } // Translate matrix. Only 4x4 matrices supported inline void m3dTranslateMatrix44(M3DMatrix44f m, float x, float y, float z) { m[12] += x; m[13] += y; m[14] += z; } inline void m3dTranslateMatrix44(M3DMatrix44d m, double x, double y, double z) { m[12] += x; m[13] += y; m[14] += z; } // Scale matrix. Only 4x4 matrices supported inline void m3dScaleMatrix44(M3DMatrix44f m, float x, float y, float z) { m[0] *= x; m[5] *= y; m[10] *= z; } inline void m3dScaleMatrix44(M3DMatrix44d m, double x, double y, double z) { m[0] *= x; m[5] *= y; m[10] *= z; } // Transpose/Invert - Only 4x4 matricies supported #define TRANSPOSE44(dst, src) { for (int j = 0; j < 4; j++) { for (int i = 0; i < 4; i++) { dst[(j*4)+i] = src[(i*4)+j]; } } } inline void m3dTransposeMatrix44(M3DMatrix44f dst, const M3DMatrix44f src) { TRANSPOSE44(dst, src); } inline void m3dTransposeMatrix44(M3DMatrix44d dst, const M3DMatrix44d src) { TRANSPOSE44(dst, src); } bool m3dInvertMatrix44(M3DMatrix44f dst, const M3DMatrix44f src); bool m3dInvertMatrix44(M3DMatrix44d dst, const M3DMatrix44d src); /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // Other Miscellaneous functions // Find a normal from three points // Implemented in math3d.cpp void m3dFindNormal(M3DVector3f result, const M3DVector3f point1, const M3DVector3f point2, const M3DVector3f point3); void m3dFindNormal(M3DVector3d result, const M3DVector3d point1, const M3DVector3d point2, const M3DVector3d point3); // Calculates the signed distance of a point to a plane inline float m3dGetDistanceToPlane(const M3DVector3f point, const M3DVector4f plane) { return point[0]*plane[0] + point[1]*plane[1] + point[2]*plane[2] + plane[3]; } inline double m3dGetDistanceToPlane(const M3DVector3d point, const M3DVector4d plane) { return point[0]*plane[0] + point[1]*plane[1] + point[2]*plane[2] + plane[3]; } // Get plane equation from three points and a normal void m3dGetPlaneEquation(M3DVector4f planeEq, const M3DVector3f p1, const M3DVector3f p2, const M3DVector3f p3); void m3dGetPlaneEquation(M3DVector4d planeEq, const M3DVector3d p1, const M3DVector3d p2, const M3DVector3d p3); // Determine if a ray intersects a sphere double m3dRaySphereTest(const M3DVector3d point, const M3DVector3d ray, const M3DVector3d sphereCenter, double sphereRadius); float m3dRaySphereTest(const M3DVector3f point, const M3DVector3f ray, const M3DVector3f sphereCenter, float sphereRadius); // Etc. etc. /////////////////////////////////////////////////////////////////////////////////////////////////////// // Faster (and more robust) replacements for gluProject void m3dProjectXY( M3DVector2f vPointOut, const M3DMatrix44f mModelView, const M3DMatrix44f mProjection, const int iViewPort[4], const M3DVector3f vPointIn); void m3dProjectXYZ(M3DVector3f vPointOut, const M3DMatrix44f mModelView, const M3DMatrix44f mProjection, const int iViewPort[4], const M3DVector3f vPointIn); ////////////////////////////////////////////////////////////////////////////////////////////////// // This function does a three dimensional Catmull-Rom "spline" interpolation between p1 and p2 void m3dCatmullRom(M3DVector3f vOut, M3DVector3f vP0, M3DVector3f vP1, M3DVector3f vP2, M3DVector3f vP3, float t); void m3dCatmullRom(M3DVector3d vOut, M3DVector3d vP0, M3DVector3d vP1, M3DVector3d vP2, M3DVector3d vP3, double t); ////////////////////////////////////////////////////////////////////////////////////////////////// // Compare floats and doubles... inline bool m3dCloseEnough(float fCandidate, float fCompare, float fEpsilon) { return (fabs(fCandidate - fCompare) < fEpsilon); } inline bool m3dCloseEnough(double dCandidate, double dCompare, double dEpsilon) { return (fabs(dCandidate - dCompare) < dEpsilon); } //////////////////////////////////////////////////////////////////////////// // Used for normal mapping. Finds the tangent bases for a triangle... // Only a floating point implementation is provided. void m3dCalculateTangentBasis(const M3DVector3f pvTriangle[3], const M3DVector2f pvTexCoords[3], const M3DVector3f N, M3DVector3f vTangent); //////////////////////////////////////////////////////////////////////////// // Smoothly step between 0 and 1 between edge1 and edge 2 double m3dSmoothStep(double edge1, double edge2, double x); float m3dSmoothStep(float edge1, float edge2, float x); ///////////////////////////////////////////////////////////////////////////// // Planar shadow Matrix void m3dMakePlanarShadowMatrix(M3DMatrix44d proj, const M3DVector4d planeEq, const M3DVector3d vLightPos); void m3dMakePlanarShadowMatrix(M3DMatrix44f proj, const M3DVector4f planeEq, const M3DVector3f vLightPos); double m3dClosestPointOnRay(M3DVector3d vPointOnRay, const M3DVector3d vRayOrigin, const M3DVector3d vUnitRayDir, const M3DVector3d vPointInSpace); float m3dClosestPointOnRay(M3DVector3f vPointOnRay, const M3DVector3f vRayOrigin, const M3DVector3f vUnitRayDir, const M3DVector3f vPointInSpace); #endif
Math3d.cpp
// Math3d.c // Implementation of non-inlined functions in the Math3D Library // Richard S. Wright Jr. // These are pretty portable #include "stdafx.h" #include <math.h> #include "math3d.h" //////////////////////////////////////////////////////////// // LoadIdentity // For 3x3 and 4x4 float and double matricies. // 3x3 float void m3dLoadIdentity33(M3DMatrix33f m) { // Don't be fooled, this is still column major static M3DMatrix33f identity = { 1.0f, 0.0f, 0.0f , 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f }; memcpy(m, identity, sizeof(M3DMatrix33f)); } // 3x3 double void m3dLoadIdentity33(M3DMatrix33d m) { // Don't be fooled, this is still column major static M3DMatrix33d identity = { 1.0, 0.0, 0.0 , 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 }; memcpy(m, identity, sizeof(M3DMatrix33d)); } // 4x4 float void m3dLoadIdentity44(M3DMatrix44f m) { // Don't be fooled, this is still column major static M3DMatrix44f identity = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; memcpy(m, identity, sizeof(M3DMatrix44f)); } // 4x4 double void m3dLoadIdentity44(M3DMatrix44d m) { static M3DMatrix44d identity = { 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 }; memcpy(m, identity, sizeof(M3DMatrix44d)); } //////////////////////////////////////////////////////////////////////// // Return the square of the distance between two points // Should these be inlined...? float m3dGetDistanceSquared(const M3DVector3f u, const M3DVector3f v) { float x = u[0] - v[0]; x = x*x; float y = u[1] - v[1]; y = y*y; float z = u[2] - v[2]; z = z*z; return (x + y + z); } // Ditto above, but for doubles double m3dGetDistanceSquared(const M3DVector3d u, const M3DVector3d v) { double x = u[0] - v[0]; x = x*x; double y = u[1] - v[1]; y = y*y; double z = u[2] - v[2]; z = z*z; return (x + y + z); } #define A(row,col) a[(col<<2)+row] #define B(row,col) b[(col<<2)+row] #define P(row,col) product[(col<<2)+row] /////////////////////////////////////////////////////////////////////////////// // Multiply two 4x4 matricies void m3dMatrixMultiply44(M3DMatrix44f product, const M3DMatrix44f a, const M3DMatrix44f b ) { for (int i = 0; i < 4; i++) { float ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); } } // Ditto above, but for doubles void m3dMatrixMultiply(M3DMatrix44d product, const M3DMatrix44d a, const M3DMatrix44d b ) { for (int i = 0; i < 4; i++) { double ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); } } #undef A #undef B #undef P #define A33(row,col) a[(col*3)+row] #define B33(row,col) b[(col*3)+row] #define P33(row,col) product[(col*3)+row] /////////////////////////////////////////////////////////////////////////////// // Multiply two 3x3 matricies void m3dMatrixMultiply33(M3DMatrix33f product, const M3DMatrix33f a, const M3DMatrix33f b ) { for (int i = 0; i < 3; i++) { float ai0=A33(i,0), ai1=A33(i,1), ai2=A33(i,2); P33(i,0) = ai0 * B33(0,0) + ai1 * B33(1,0) + ai2 * B33(2,0); P33(i,1) = ai0 * B33(0,1) + ai1 * B33(1,1) + ai2 * B33(2,1); P33(i,2) = ai0 * B33(0,2) + ai1 * B33(1,2) + ai2 * B33(2,2); } } // Ditto above, but for doubles void m3dMatrixMultiply44(M3DMatrix33d product, const M3DMatrix33d a, const M3DMatrix33d b ) { for (int i = 0; i < 3; i++) { double ai0=A33(i,0), ai1=A33(i,1), ai2=A33(i,2); P33(i,0) = ai0 * B33(0,0) + ai1 * B33(1,0) + ai2 * B33(2,0); P33(i,1) = ai0 * B33(0,1) + ai1 * B33(1,1) + ai2 * B33(2,1); P33(i,2) = ai0 * B33(0,2) + ai1 * B33(1,2) + ai2 * B33(2,2); } } #undef A33 #undef B33 #undef P33 #define M33(row,col) m[col*3+row] /////////////////////////////////////////////////////////////////////////////// // Creates a 3x3 rotation matrix, takes radians NOT degrees void m3dRotationMatrix33(M3DMatrix33f m, float angle, float x, float y, float z) { float mag, s, c; float xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = float(sin(angle)); c = float(cos(angle)); mag = float(sqrt( x*x + y*y + z*z )); // Identity matrix if (mag == 0.0f) { m3dLoadIdentity33(m); return; } // Rotation matrix is normalized x /= mag; y /= mag; z /= mag; xx = x * x; yy = y * y; zz = z * z; xy = x * y; yz = y * z; zx = z * x; xs = x * s; ys = y * s; zs = z * s; one_c = 1.0f - c; M33(0,0) = (one_c * xx) + c; M33(0,1) = (one_c * xy) - zs; M33(0,2) = (one_c * zx) + ys; M33(1,0) = (one_c * xy) + zs; M33(1,1) = (one_c * yy) + c; M33(1,2) = (one_c * yz) - xs; M33(2,0) = (one_c * zx) - ys; M33(2,1) = (one_c * yz) + xs; M33(2,2) = (one_c * zz) + c; } #undef M33 /////////////////////////////////////////////////////////////////////////////// // Creates a 4x4 rotation matrix, takes radians NOT degrees void m3dRotationMatrix44(M3DMatrix44f m, float angle, float x, float y, float z) { float mag, s, c; float xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = float(sin(angle)); c = float(cos(angle)); mag = float(sqrt( x*x + y*y + z*z )); // Identity matrix if (mag == 0.0f) { m3dLoadIdentity44(m); return; } // Rotation matrix is normalized x /= mag; y /= mag; z /= mag; #define M(row,col) m[col*4+row] xx = x * x; yy = y * y; zz = z * z; xy = x * y; yz = y * z; zx = z * x; xs = x * s; ys = y * s; zs = z * s; one_c = 1.0f - c; M(0,0) = (one_c * xx) + c; M(0,1) = (one_c * xy) - zs; M(0,2) = (one_c * zx) + ys; M(0,3) = 0.0f; M(1,0) = (one_c * xy) + zs; M(1,1) = (one_c * yy) + c; M(1,2) = (one_c * yz) - xs; M(1,3) = 0.0f; M(2,0) = (one_c * zx) - ys; M(2,1) = (one_c * yz) + xs; M(2,2) = (one_c * zz) + c; M(2,3) = 0.0f; M(3,0) = 0.0f; M(3,1) = 0.0f; M(3,2) = 0.0f; M(3,3) = 1.0f; #undef M } /////////////////////////////////////////////////////////////////////////////// // Ditto above, but for doubles void m3dRotationMatrix33(M3DMatrix33d m, double angle, double x, double y, double z) { double mag, s, c; double xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = sin(angle); c = cos(angle); mag = sqrt( x*x + y*y + z*z ); // Identity matrix if (mag == 0.0) { m3dLoadIdentity33(m); return; } // Rotation matrix is normalized x /= mag; y /= mag; z /= mag; #define M(row,col) m[col*3+row] xx = x * x; yy = y * y; zz = z * z; xy = x * y; yz = y * z; zx = z * x; xs = x * s; ys = y * s; zs = z * s; one_c = 1.0 - c; M(0,0) = (one_c * xx) + c; M(0,1) = (one_c * xy) - zs; M(0,2) = (one_c * zx) + ys; M(1,0) = (one_c * xy) + zs; M(1,1) = (one_c * yy) + c; M(1,2) = (one_c * yz) - xs; M(2,0) = (one_c * zx) - ys; M(2,1) = (one_c * yz) + xs; M(2,2) = (one_c * zz) + c; #undef M } /////////////////////////////////////////////////////////////////////////////// // Creates a 4x4 rotation matrix, takes radians NOT degrees void m3dRotationMatrix44(M3DMatrix44d m, double angle, double x, double y, double z) { double mag, s, c; double xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = sin(angle); c = cos(angle); mag = sqrt( x*x + y*y + z*z ); // Identity matrix if (mag == 0.0) { m3dLoadIdentity44(m); return; } // Rotation matrix is normalized x /= mag; y /= mag; z /= mag; #define M(row,col) m[col*4+row] xx = x * x; yy = y * y; zz = z * z; xy = x * y; yz = y * z; zx = z * x; xs = x * s; ys = y * s; zs = z * s; one_c = 1.0f - c; M(0,0) = (one_c * xx) + c; M(0,1) = (one_c * xy) - zs; M(0,2) = (one_c * zx) + ys; M(0,3) = 0.0; M(1,0) = (one_c * xy) + zs; M(1,1) = (one_c * yy) + c; M(1,2) = (one_c * yz) - xs; M(1,3) = 0.0; M(2,0) = (one_c * zx) - ys; M(2,1) = (one_c * yz) + xs; M(2,2) = (one_c * zz) + c; M(2,3) = 0.0; M(3,0) = 0.0; M(3,1) = 0.0; M(3,2) = 0.0; M(3,3) = 1.0; #undef M } // Lifted from Mesa /* * Compute inverse of 4x4 transformation matrix. * Code contributed by Jacques Leroy jle@star.be * Return GL_TRUE for success, GL_FALSE for failure (singular matrix) */ bool m3dInvertMatrix44(M3DMatrix44f dst, const M3DMatrix44f src ) { #define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; } #define MAT(m,r,c) (m)[(c)*4+(r)] float wtmp[4][8]; float m0, m1, m2, m3, s; float *r0, *r1, *r2, *r3; r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; r0[0] = MAT(src,0,0), r0[1] = MAT(src,0,1), r0[2] = MAT(src,0,2), r0[3] = MAT(src,0,3), r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, r1[0] = MAT(src,1,0), r1[1] = MAT(src,1,1), r1[2] = MAT(src,1,2), r1[3] = MAT(src,1,3), r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, r2[0] = MAT(src,2,0), r2[1] = MAT(src,2,1), r2[2] = MAT(src,2,2), r2[3] = MAT(src,2,3), r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, r3[0] = MAT(src,3,0), r3[1] = MAT(src,3,1), r3[2] = MAT(src,3,2), r3[3] = MAT(src,3,3), r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; /* choose pivot - or die */ if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2); if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1); if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0); if (0.0 == r0[0]) return false; /* eliminate first variable */ m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; s = r0[4]; if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r0[5]; if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r0[6]; if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r0[7]; if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } /* choose pivot - or die */ if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2); if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1); if (0.0 == r1[1]) return false; /* eliminate second variable */ m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } /* choose pivot - or die */ if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2); if (0.0 == r2[2]) return false; /* eliminate third variable */ m3 = r3[2]/r2[2]; r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; /* last check */ if (0.0 == r3[3]) return false; s = 1.0f/r3[3]; /* now back substitute row 3 */ r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; m2 = r2[3]; /* now back substitute row 2 */ s = 1.0f/r2[2]; r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); m1 = r1[3]; r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; m0 = r0[3]; r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; m1 = r1[2]; /* now back substitute row 1 */ s = 1.0f/r1[1]; r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); m0 = r0[2]; r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; m0 = r0[1]; /* now back substitute row 0 */ s = 1.0f/r0[0]; r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); MAT(dst,0,0) = r0[4]; MAT(dst,0,1) = r0[5], MAT(dst,0,2) = r0[6]; MAT(dst,0,3) = r0[7], MAT(dst,1,0) = r1[4]; MAT(dst,1,1) = r1[5], MAT(dst,1,2) = r1[6]; MAT(dst,1,3) = r1[7], MAT(dst,2,0) = r2[4]; MAT(dst,2,1) = r2[5], MAT(dst,2,2) = r2[6]; MAT(dst,2,3) = r2[7], MAT(dst,3,0) = r3[4]; MAT(dst,3,1) = r3[5], MAT(dst,3,2) = r3[6]; MAT(dst,3,3) = r3[7]; return true; #undef MAT #undef SWAP_ROWS } // Ditto above, but for doubles bool m3dInvertMatrix44(M3DMatrix44d dst, const M3DMatrix44d src) { #define SWAP_ROWS(a, b) { double *_tmp = a; (a)=(b); (b)=_tmp; } #define MAT(m,r,c) (m)[(c)*4+(r)] double wtmp[4][8]; double m0, m1, m2, m3, s; double *r0, *r1, *r2, *r3; r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; r0[0] = MAT(src,0,0), r0[1] = MAT(src,0,1), r0[2] = MAT(src,0,2), r0[3] = MAT(src,0,3), r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, r1[0] = MAT(src,1,0), r1[1] = MAT(src,1,1), r1[2] = MAT(src,1,2), r1[3] = MAT(src,1,3), r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, r2[0] = MAT(src,2,0), r2[1] = MAT(src,2,1), r2[2] = MAT(src,2,2), r2[3] = MAT(src,2,3), r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, r3[0] = MAT(src,3,0), r3[1] = MAT(src,3,1), r3[2] = MAT(src,3,2), r3[3] = MAT(src,3,3), r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; // choose pivot - or die if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2); if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1); if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0); if (0.0 == r0[0]) return false; // eliminate first variable m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; s = r0[4]; if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r0[5]; if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r0[6]; if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r0[7]; if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } // choose pivot - or die if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2); if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1); if (0.0 == r1[1]) return false; // eliminate second variable m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } // choose pivot - or die if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2); if (0.0 == r2[2]) return false; // eliminate third variable m3 = r3[2]/r2[2]; r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; // last check if (0.0 == r3[3]) return false; s = 1.0f/r3[3]; // now back substitute row 3 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; m2 = r2[3]; // now back substitute row 2 s = 1.0f/r2[2]; r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); m1 = r1[3]; r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; m0 = r0[3]; r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; m1 = r1[2]; // now back substitute row 1 s = 1.0f/r1[1]; r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); m0 = r0[2]; r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; m0 = r0[1]; // now back substitute row 0 s = 1.0f/r0[0]; r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); MAT(dst,0,0) = r0[4]; MAT(dst,0,1) = r0[5], MAT(dst,0,2) = r0[6]; MAT(dst,0,3) = r0[7], MAT(dst,1,0) = r1[4]; MAT(dst,1,1) = r1[5], MAT(dst,1,2) = r1[6]; MAT(dst,1,3) = r1[7], MAT(dst,2,0) = r2[4]; MAT(dst,2,1) = r2[5], MAT(dst,2,2) = r2[6]; MAT(dst,2,3) = r2[7], MAT(dst,3,0) = r3[4]; MAT(dst,3,1) = r3[5], MAT(dst,3,2) = r3[6]; MAT(dst,3,3) = r3[7]; return true; #undef MAT #undef SWAP_ROWS return true; } /////////////////////////////////////////////////////////////////////////////////////// // Get Window coordinates, discard Z... void m3dProjectXY(const M3DMatrix44f mModelView, const M3DMatrix44f mProjection, const int iViewPort[4], const M3DVector3f vPointIn, M3DVector2f vPointOut) { M3DVector4f vBack, vForth; memcpy(vBack, vPointIn, sizeof(float)*3); vBack[3] = 1.0f; m3dTransformVector4(vForth, vBack, mModelView); m3dTransformVector4(vBack, vForth, mProjection); if(!m3dCloseEnough(vBack[3], 0.0f, 0.000001f)) { float div = 1.0f / vBack[3]; vBack[0] *= div; vBack[1] *= div; } vPointOut[0] = vBack[0] * 0.5f + 0.5f; vPointOut[1] = vBack[1] * 0.5f + 0.5f; /* Map x,y to viewport */ vPointOut[0] = (vPointOut[0] * iViewPort[2]) + iViewPort[0]; vPointOut[1] = (vPointOut[1] * iViewPort[3]) + iViewPort[1]; } /////////////////////////////////////////////////////////////////////////////////////// // Get window coordinates, we also want Z.... void m3dProjectXYZ(const M3DMatrix44f mModelView, const M3DMatrix44f mProjection, const int iViewPort[4], const M3DVector3f vPointIn, M3DVector3f vPointOut) { M3DVector4f vBack, vForth; memcpy(vBack, vPointIn, sizeof(float)*3); vBack[3] = 1.0f; m3dTransformVector4(vForth, vBack, mModelView); m3dTransformVector4(vBack, vForth, mProjection); if(!m3dCloseEnough(vBack[3], 0.0f, 0.000001f)) { float div = 1.0f / vBack[3]; vBack[0] *= div; vBack[1] *= div; vBack[2] *= div; } vPointOut[0] = vBack[0] * 0.5f + 0.5f; vPointOut[1] = vBack[1] * 0.5f + 0.5f; vPointOut[2] = vBack[2] * 0.5f + 0.5f; /* Map x,y to viewport */ vPointOut[0] = (vPointOut[0] * iViewPort[2]) + iViewPort[0]; vPointOut[1] = (vPointOut[1] * iViewPort[3]) + iViewPort[1]; } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // Misc. Utilities /////////////////////////////////////////////////////////////////////////////// // Calculates the normal of a triangle specified by the three points // p1, p2, and p3. Each pointer points to an array of three floats. The // triangle is assumed to be wound counter clockwise. void m3dFindNormal(M3DVector3f result, const M3DVector3f point1, const M3DVector3f point2, const M3DVector3f point3) { M3DVector3f v1,v2; // Temporary vectors // Calculate two vectors from the three points. Assumes counter clockwise // winding! v1[0] = point1[0] - point2[0]; v1[1] = point1[1] - point2[1]; v1[2] = point1[2] - point2[2]; v2[0] = point2[0] - point3[0]; v2[1] = point2[1] - point3[1]; v2[2] = point2[2] - point3[2]; // Take the cross product of the two vectors to get // the normal vector. m3dCrossProduct(result, v1, v2); } // Ditto above, but for doubles void m3dFindNormal(M3DVector3d result, const M3DVector3d point1, const M3DVector3d point2, const M3DVector3d point3) { M3DVector3d v1,v2; // Temporary vectors // Calculate two vectors from the three points. Assumes counter clockwise // winding! v1[0] = point1[0] - point2[0]; v1[1] = point1[1] - point2[1]; v1[2] = point1[2] - point2[2]; v2[0] = point2[0] - point3[0]; v2[1] = point2[1] - point3[1]; v2[2] = point2[2] - point3[2]; // Take the cross product of the two vectors to get // the normal vector. m3dCrossProduct(result, v1, v2); } ///////////////////////////////////////////////////////////////////////////////////////// // Calculate the plane equation of the plane that the three specified points lay in. The // points are given in clockwise winding order, with normal pointing out of clockwise face // planeEq contains the A,B,C, and D of the plane equation coefficients void m3dGetPlaneEquation(M3DVector4f planeEq, const M3DVector3f p1, const M3DVector3f p2, const M3DVector3f p3) { // Get two vectors... do the cross product M3DVector3f v1, v2; // V1 = p3 - p1 v1[0] = p3[0] - p1[0]; v1[1] = p3[1] - p1[1]; v1[2] = p3[2] - p1[2]; // V2 = P2 - p1 v2[0] = p2[0] - p1[0]; v2[1] = p2[1] - p1[1]; v2[2] = p2[2] - p1[2]; // Unit normal to plane - Not sure which is the best way here m3dCrossProduct(planeEq, v1, v2); m3dNormalizeVector(planeEq); // Back substitute to get D planeEq[3] = -(planeEq[0] * p3[0] + planeEq[1] * p3[1] + planeEq[2] * p3[2]); } // Ditto above, but for doubles void m3dGetPlaneEquation(M3DVector4d planeEq, const M3DVector3d p1, const M3DVector3d p2, const M3DVector3d p3) { // Get two vectors... do the cross product M3DVector3d v1, v2; // V1 = p3 - p1 v1[0] = p3[0] - p1[0]; v1[1] = p3[1] - p1[1]; v1[2] = p3[2] - p1[2]; // V2 = P2 - p1 v2[0] = p2[0] - p1[0]; v2[1] = p2[1] - p1[1]; v2[2] = p2[2] - p1[2]; // Unit normal to plane - Not sure which is the best way here m3dCrossProduct(planeEq, v1, v2); m3dNormalizeVector(planeEq); // Back substitute to get D planeEq[3] = -(planeEq[0] * p3[0] + planeEq[1] * p3[1] + planeEq[2] * p3[2]); } ////////////////////////////////////////////////////////////////////////////////////////////////// // This function does a three dimensional Catmull-Rom curve interpolation. Pass four points, and a // floating point number between 0.0 and 1.0. The curve is interpolated between the middle two points. // Coded by RSW // http://www.mvps.org/directx/articles/catmull/ void m3dCatmullRom3(M3DVector3f vOut, M3DVector3f vP0, M3DVector3f vP1, M3DVector3f vP2, M3DVector3f vP3, float t) { // Unrolled loop to speed things up a little bit... float t2 = t * t; float t3 = t2 * t; // X vOut[0] = 0.5f * ( ( 2.0f * vP1[0]) + (-vP0[0] + vP2[0]) * t + (2.0f * vP0[0] - 5.0f *vP1[0] + 4.0f * vP2[0] - vP3[0]) * t2 + (-vP0[0] + 3.0f*vP1[0] - 3.0f *vP2[0] + vP3[0]) * t3); // Y vOut[1] = 0.5f * ( ( 2.0f * vP1[1]) + (-vP0[1] + vP2[1]) * t + (2.0f * vP0[1] - 5.0f *vP1[1] + 4.0f * vP2[1] - vP3[1]) * t2 + (-vP0[1] + 3.0f*vP1[1] - 3.0f *vP2[1] + vP3[1]) * t3); // Z vOut[2] = 0.5f * ( ( 2.0f * vP1[2]) + (-vP0[2] + vP2[2]) * t + (2.0f * vP0[2] - 5.0f *vP1[2] + 4.0f * vP2[2] - vP3[2]) * t2 + (-vP0[2] + 3.0f*vP1[2] - 3.0f *vP2[2] + vP3[2]) * t3); } ////////////////////////////////////////////////////////////////////////////////////////////////// // This function does a three dimensional Catmull-Rom curve interpolation. Pass four points, and a // floating point number between 0.0 and 1.0. The curve is interpolated between the middle two points. // Coded by RSW // http://www.mvps.org/directx/articles/catmull/ void m3dCatmullRom3(M3DVector3d vOut, M3DVector3d vP0, M3DVector3d vP1, M3DVector3d vP2, M3DVector3d vP3, double t) { // Unrolled loop to speed things up a little bit... double t2 = t * t; double t3 = t2 * t; // X vOut[0] = 0.5 * ( ( 2.0 * vP1[0]) + (-vP0[0] + vP2[0]) * t + (2.0 * vP0[0] - 5.0 *vP1[0] + 4.0 * vP2[0] - vP3[0]) * t2 + (-vP0[0] + 3.0*vP1[0] - 3.0 *vP2[0] + vP3[0]) * t3); // Y vOut[1] = 0.5 * ( ( 2.0 * vP1[1]) + (-vP0[1] + vP2[1]) * t + (2.0 * vP0[1] - 5.0 *vP1[1] + 4.0 * vP2[1] - vP3[1]) * t2 + (-vP0[1] + 3*vP1[1] - 3.0 *vP2[1] + vP3[1]) * t3); // Z vOut[2] = 0.5 * ( ( 2.0 * vP1[2]) + (-vP0[2] + vP2[2]) * t + (2.0 * vP0[2] - 5.0 *vP1[2] + 4.0 * vP2[2] - vP3[2]) * t2 + (-vP0[2] + 3.0*vP1[2] - 3.0 *vP2[2] + vP3[2]) * t3); } /////////////////////////////////////////////////////////////////////////////// // Determine if the ray (starting at point) intersects the sphere centered at // sphereCenter with radius sphereRadius // Return value is < 0 if the ray does not intersect // Return value is 0.0 if ray is tangent // Positive value is distance to the intersection point // Algorithm from "3D Math Primer for Graphics and Game Development" double m3dRaySphereTest(const M3DVector3d point, const M3DVector3d ray, const M3DVector3d sphereCenter, double sphereRadius) { //m3dNormalizeVector(ray); // Make sure ray is unit length M3DVector3d rayToCenter; // Ray to center of sphere rayToCenter[0] = sphereCenter[0] - point[0]; rayToCenter[1] = sphereCenter[1] - point[1]; rayToCenter[2] = sphereCenter[2] - point[2]; // Project rayToCenter on ray to test double a = m3dDotProduct(rayToCenter, ray); // Distance to center of sphere double distance2 = m3dDotProduct(rayToCenter, rayToCenter); // Or length double dRet = (sphereRadius * sphereRadius) - distance2 + (a*a); if(dRet > 0.0) // Return distance to intersection dRet = a - sqrt(dRet); return dRet; } /////////////////////////////////////////////////////////////////////////////// // Determine if the ray (starting at point) intersects the sphere centered at // ditto above, but uses floating point math float m3dRaySphereTest(const M3DVector3f point, const M3DVector3f ray, const M3DVector3f sphereCenter, float sphereRadius) { //m3dNormalizeVectorf(ray); // Make sure ray is unit length M3DVector3f rayToCenter; // Ray to center of sphere rayToCenter[0] = sphereCenter[0] - point[0]; rayToCenter[1] = sphereCenter[1] - point[1]; rayToCenter[2] = sphereCenter[2] - point[2]; // Project rayToCenter on ray to test float a = m3dDotProduct(rayToCenter, ray); // Distance to center of sphere float distance2 = m3dDotProduct(rayToCenter, rayToCenter); // Or length float dRet = (sphereRadius * sphereRadius) - distance2 + (a*a); if(dRet > 0.0) // Return distance to intersection dRet = a - sqrtf(dRet); return dRet; } /////////////////////////////////////////////////////////////////////////////////////////////////// // Calculate the tangent basis for a triangle on the surface of a model // This vector is needed for most normal mapping shaders void m3dCalculateTangentBasis(const M3DVector3f vTriangle[3], const M3DVector2f vTexCoords[3], const M3DVector3f N, M3DVector3f vTangent) { M3DVector3f dv2v1, dv3v1; float dc2c1t, dc2c1b, dc3c1t, dc3c1b; float M; m3dSubtractVectors3(dv2v1, vTriangle[1], vTriangle[0]); m3dSubtractVectors3(dv3v1, vTriangle[2], vTriangle[0]); dc2c1t = vTexCoords[1][0] - vTexCoords[0][0]; dc2c1b = vTexCoords[1][1] - vTexCoords[0][1]; dc3c1t = vTexCoords[2][0] - vTexCoords[0][0]; dc3c1b = vTexCoords[2][1] - vTexCoords[0][1]; M = (dc2c1t * dc3c1b) - (dc3c1t * dc2c1b); M = 1.0f / M; m3dScaleVector3(dv2v1, dc3c1b); m3dScaleVector3(dv3v1, dc2c1b); m3dSubtractVectors3(vTangent, dv2v1, dv3v1); m3dScaleVector3(vTangent, M); // This potentially changes the direction of the vector m3dNormalizeVector(vTangent); M3DVector3f B; m3dCrossProduct(B, N, vTangent); m3dCrossProduct(vTangent, B, N); m3dNormalizeVector(vTangent); } //////////////////////////////////////////////////////////////////////////// // Smoothly step between 0 and 1 between edge1 and edge 2 double m3dSmoothStep(double edge1, double edge2, double x) { double t; t = (x - edge1) / (edge2 - edge1); if(t > 1.0) t = 1.0; if(t < 0.0) t = 0.0f; return t * t * ( 3.0 - 2.0 * t); } //////////////////////////////////////////////////////////////////////////// // Smoothly step between 0 and 1 between edge1 and edge 2 float m3dSmoothStep(float edge1, float edge2, float x) { float t; t = (x - edge1) / (edge2 - edge1); if(t > 1.0f) t = 1.0f; if(t < 0.0) t = 0.0f; return t * t * ( 3.0f - 2.0f * t); } /////////////////////////////////////////////////////////////////////////// // Creae a projection to "squish" an object into the plane. // Use m3dGetPlaneEquationf(planeEq, point1, point2, point3); // to get a plane equation. void m3dMakePlanarShadowMatrix(M3DMatrix44f proj, const M3DVector4f planeEq, const M3DVector3f vLightPos) { // These just make the code below easier to read. They will be // removed by the optimizer. float a = planeEq[0]; float b = planeEq[1]; float c = planeEq[2]; float d = planeEq[3]; float dx = -vLightPos[0]; float dy = -vLightPos[1]; float dz = -vLightPos[2]; // Now build the projection matrix proj[0] = b * dy + c * dz; proj[1] = -a * dy; proj[2] = -a * dz; proj[3] = 0.0; proj[4] = -b * dx; proj[5] = a * dx + c * dz; proj[6] = -b * dz; proj[7] = 0.0; proj[8] = -c * dx; proj[9] = -c * dy; proj[10] = a * dx + b * dy; proj[11] = 0.0; proj[12] = -d * dx; proj[13] = -d * dy; proj[14] = -d * dz; proj[15] = a * dx + b * dy + c * dz; // Shadow matrix ready } /////////////////////////////////////////////////////////////////////////// // Creae a projection to "squish" an object into the plane. // Use m3dGetPlaneEquationd(planeEq, point1, point2, point3); // to get a plane equation. void m3dMakePlanarShadowMatrix(M3DMatrix44d proj, const M3DVector4d planeEq, const M3DVector3f vLightPos) { // These just make the code below easier to read. They will be // removed by the optimizer. double a = planeEq[0]; double b = planeEq[1]; double c = planeEq[2]; double d = planeEq[3]; double dx = -vLightPos[0]; double dy = -vLightPos[1]; double dz = -vLightPos[2]; // Now build the projection matrix proj[0] = b * dy + c * dz; proj[1] = -a * dy; proj[2] = -a * dz; proj[3] = 0.0; proj[4] = -b * dx; proj[5] = a * dx + c * dz; proj[6] = -b * dz; proj[7] = 0.0; proj[8] = -c * dx; proj[9] = -c * dy; proj[10] = a * dx + b * dy; proj[11] = 0.0; proj[12] = -d * dx; proj[13] = -d * dy; proj[14] = -d * dz; proj[15] = a * dx + b * dy + c * dz; // Shadow matrix ready } ///////////////////////////////////////////////////////////////////////////// // I want to know the point on a ray, closest to another given point in space. // As a bonus, return the distance squared of the two points. // In: vRayOrigin is the origin of the ray. // In: vUnitRayDir is the unit vector of the ray // In: vPointInSpace is the point in space // Out: vPointOnRay is the poing on the ray closest to vPointInSpace // Return: The square of the distance to the ray double m3dClosestPointOnRay(M3DVector3d vPointOnRay, const M3DVector3d vRayOrigin, const M3DVector3d vUnitRayDir, const M3DVector3d vPointInSpace) { M3DVector3d v; m3dSubtractVectors3(v, vPointInSpace, vRayOrigin); double t = m3dDotProduct(vUnitRayDir, v); // This is the point on the ray vPointOnRay[0] = vRayOrigin[0] + (t * vUnitRayDir[0]); vPointOnRay[1] = vRayOrigin[1] + (t * vUnitRayDir[1]); vPointOnRay[2] = vRayOrigin[2] + (t * vUnitRayDir[2]); return m3dGetDistanceSquared(vPointOnRay, vPointInSpace); } // ditto above... but with floats float m3dClosestPointOnRay(M3DVector3f vPointOnRay, const M3DVector3f vRayOrigin, const M3DVector3f vUnitRayDir, const M3DVector3f vPointInSpace) { M3DVector3f v; m3dSubtractVectors3(v, vPointInSpace, vRayOrigin); float t = m3dDotProduct(vUnitRayDir, v); // This is the point on the ray vPointOnRay[0] = vRayOrigin[0] + (t * vUnitRayDir[0]); vPointOnRay[1] = vRayOrigin[1] + (t * vUnitRayDir[1]); vPointOnRay[2] = vRayOrigin[2] + (t * vUnitRayDir[2]); return m3dGetDistanceSquared(vPointOnRay, vPointInSpace); }