from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import os.path as osp import numpy as np # `pip install easydict` if you don't have it from easydict import EasyDict as edict __C = edict() # Consumers can get config by: # from fast_rcnn_config import cfg cfg = __C # # Training options # __C.TRAIN = edict() # Initial learning rate __C.TRAIN.LEARNING_RATE = 0.001 # Momentum __C.TRAIN.MOMENTUM = 0.9 # Weight decay, for regularization __C.TRAIN.WEIGHT_DECAY = 0.0001 # Factor for reducing the learning rate __C.TRAIN.GAMMA = 0.1 # Step size for reducing the learning rate, currently only support one step __C.TRAIN.STEPSIZE = [30000] # Iteration intervals for showing the loss during training, on command line interface __C.TRAIN.DISPLAY = 10 # Whether to double the learning rate for bias __C.TRAIN.DOUBLE_BIAS = True # Whether to initialize the weights with truncated normal distribution __C.TRAIN.TRUNCATED = False # Whether to have weight decay on bias as well __C.TRAIN.BIAS_DECAY = False # Whether to add ground truth boxes to the pool when sampling regions __C.TRAIN.USE_GT = False # Whether to use aspect-ratio grouping of training images, introduced merely for saving # GPU memory __C.TRAIN.ASPECT_GROUPING = False # The number of snapshots kept, older ones are deleted to save space __C.TRAIN.SNAPSHOT_KEPT = 3 # The time interval for saving tensorflow summaries __C.TRAIN.SUMMARY_INTERVAL = 180 # Scale to use during training (can list multiple scales) # The scale is the pixel size of an image's shortest side __C.TRAIN.SCALES = (600,) # Max pixel size of the longest side of a scaled input image __C.TRAIN.MAX_SIZE = 1000 # Images to use per minibatch __C.TRAIN.IMS_PER_BATCH = 1 # Minibatch size (number of regions of interest [ROIs]) __C.TRAIN.BATCH_SIZE = 128 # Fraction of minibatch that is labeled foreground (i.e. class > 0) __C.TRAIN.FG_FRACTION = 0.25 # Overlap threshold for a ROI to be considered foreground (if >= FG_THRESH) __C.TRAIN.FG_THRESH = 0.5 # Overlap threshold for a ROI to be considered background (class = 0 if # overlap in [LO, HI)) __C.TRAIN.BG_THRESH_HI = 0.5 __C.TRAIN.BG_THRESH_LO = 0.1 # Use horizontally-flipped images during training? __C.TRAIN.USE_FLIPPED = True # Train bounding-box regressors __C.TRAIN.BBOX_REG = True # Overlap required between a ROI and ground-truth box in order for that ROI to # be used as a bounding-box regression training example __C.TRAIN.BBOX_THRESH = 0.5 # Iterations between snapshots __C.TRAIN.SNAPSHOT_ITERS = 5000 # solver.prototxt specifies the snapshot path prefix, this adds an optional # infix to yield the path: <prefix>[_<infix>]_iters_XYZ.caffemodel __C.TRAIN.SNAPSHOT_PREFIX = 'res101_faster_rcnn' # Normalize the targets (subtract empirical mean, divide by empirical stddev) __C.TRAIN.BBOX_NORMALIZE_TARGETS = True # Deprecated (inside weights) __C.TRAIN.BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Normalize the targets using "precomputed" (or made up) means and stdevs # (BBOX_NORMALIZE_TARGETS must also be True) __C.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED = True __C.TRAIN.BBOX_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0) __C.TRAIN.BBOX_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2) # Train using these proposals __C.TRAIN.PROPOSAL_METHOD = 'gt' # Make minibatches from images that have similar aspect ratios (i.e. both # tall and thin or both short and wide) in order to avoid wasting computation # on zero-padding. # Use RPN to detect objects __C.TRAIN.HAS_RPN = True # IOU >= thresh: positive example __C.TRAIN.RPN_POSITIVE_OVERLAP = 0.7 # IOU < thresh: negative example __C.TRAIN.RPN_NEGATIVE_OVERLAP = 0.3 # If an anchor satisfied by positive and negative conditions set to negative __C.TRAIN.RPN_CLOBBER_POSITIVES = False # Max number of foreground examples __C.TRAIN.RPN_FG_FRACTION = 0.5 # Total number of examples __C.TRAIN.RPN_BATCHSIZE = 256 # NMS threshold used on RPN proposals __C.TRAIN.RPN_NMS_THRESH = 0.7 # Number of top scoring boxes to keep before apply NMS to RPN proposals __C.TRAIN.RPN_PRE_NMS_TOP_N = 12000 # Number of top scoring boxes to keep after applying NMS to RPN proposals __C.TRAIN.RPN_POST_NMS_TOP_N = 2000 # Deprecated (outside weights) __C.TRAIN.RPN_BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Give the positive RPN examples weight of p * 1 / {num positives} # and give negatives a weight of (1 - p) # Set to -1.0 to use uniform example weighting __C.TRAIN.RPN_POSITIVE_WEIGHT = -1.0 # Whether to use all ground truth bounding boxes for training, # For COCO, setting USE_ALL_GT to False will exclude boxes that are flagged as ''iscrowd'' __C.TRAIN.USE_ALL_GT = True # # Testing options # __C.TEST = edict() # Scale to use during testing (can NOT list multiple scales) # The scale is the pixel size of an image's shortest side __C.TEST.SCALES = (600,) # Max pixel size of the longest side of a scaled input image __C.TEST.MAX_SIZE = 1000 # Overlap threshold used for non-maximum suppression (suppress boxes with # IoU >= this threshold) __C.TEST.NMS = 0.3 # Experimental: treat the (K+1) units in the cls_score layer as linear # predictors (trained, eg, with one-vs-rest SVMs). __C.TEST.SVM = False # Test using bounding-box regressors __C.TEST.BBOX_REG = True # Propose boxes __C.TEST.HAS_RPN = False # Test using these proposals __C.TEST.PROPOSAL_METHOD = 'gt' ## NMS threshold used on RPN proposals __C.TEST.RPN_NMS_THRESH = 0.7 # Number of top scoring boxes to keep before apply NMS to RPN proposals __C.TEST.RPN_PRE_NMS_TOP_N = 6000 # Number of top scoring boxes to keep after applying NMS to RPN proposals __C.TEST.RPN_POST_NMS_TOP_N = 300 # Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale) # __C.TEST.RPN_MIN_SIZE = 16 # Testing mode, default to be 'nms', 'top' is slower but better # See report for details __C.TEST.MODE = 'nms' # Only useful when TEST.MODE is 'top', specifies the number of top proposals to select __C.TEST.RPN_TOP_N = 5000 # # ResNet options # __C.RESNET = edict() # Option to set if max-pooling is appended after crop_and_resize. # if true, the region will be resized to a square of 2xPOOLING_SIZE, # then 2x2 max-pooling is applied; otherwise the region will be directly # resized to a square of POOLING_SIZE __C.RESNET.MAX_POOL = False # Number of fixed blocks during training, by default the first of all 4 blocks is fixed # Range: 0 (none) to 3 (all) __C.RESNET.FIXED_BLOCKS = 1 # # MobileNet options # __C.MOBILENET = edict() # Whether to regularize the depth-wise filters during training __C.MOBILENET.REGU_DEPTH = False # Number of fixed layers during training, by default the bottom 5 of 14 layers is fixed # Range: 0 (none) to 12 (all) __C.MOBILENET.FIXED_LAYERS = 5 # Weight decay for the mobilenet weights __C.MOBILENET.WEIGHT_DECAY = 0.00004 # Depth multiplier __C.MOBILENET.DEPTH_MULTIPLIER = 1. # # MISC # # Pixel mean values (BGR order) as a (1, 1, 3) array # We use the same pixel mean for all networks even though it's not exactly what # they were trained with __C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]]) # For reproducibility __C.RNG_SEED = 3 # Root directory of project __C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..')) # Data directory __C.DATA_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'data')) # Name (or path to) the matlab executable __C.MATLAB = 'matlab' # Place outputs under an experiments directory __C.EXP_DIR = 'default' # Use GPU implementation of non-maximum suppression __C.USE_GPU_NMS = True # Use an end-to-end tensorflow model. # Note: models in E2E tensorflow mode have only been tested in feed-forward mode, # but these models are exportable to other tensorflow instances as GraphDef files. __C.USE_E2E_TF = True # Default pooling mode, only 'crop' is available __C.POOLING_MODE = 'crop' # Size of the pooled region after RoI pooling __C.POOLING_SIZE = 7 # Anchor scales for RPN __C.ANCHOR_SCALES = [8, 16, 32] # Anchor ratios for RPN __C.ANCHOR_RATIOS = [0.5, 1, 2] # Number of filters for the RPN layer __C.RPN_CHANNELS = 512 def get_output_dir(imdb, weights_filename): """Return the directory where experimental artifacts are placed. If the directory does not exist, it is created. A canonical path is built using the name from an imdb and a network (if not None). """ outdir = osp.abspath(osp.join(__C.ROOT_DIR, 'output', __C.EXP_DIR, imdb.name)) if weights_filename is None: weights_filename = 'default' outdir = osp.join(outdir, weights_filename) if not os.path.exists(outdir): os.makedirs(outdir) return outdir def get_output_tb_dir(imdb, weights_filename): """Return the directory where tensorflow summaries are placed. If the directory does not exist, it is created. A canonical path is built using the name from an imdb and a network (if not None). """ outdir = osp.abspath(osp.join(__C.ROOT_DIR, 'tensorboard', __C.EXP_DIR, imdb.name)) if weights_filename is None: weights_filename = 'default' outdir = osp.join(outdir, weights_filename) if not os.path.exists(outdir): os.makedirs(outdir) return outdir def _merge_a_into_b(a, b): """Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. """ if type(a) is not edict: return for k, v in a.items(): # a must specify keys that are in b if k not in b: raise KeyError('{} is not a valid config key'.format(k)) # the types must match, too old_type = type(b[k]) if old_type is not type(v): if isinstance(b[k], np.ndarray): v = np.array(v, dtype=b[k].dtype) else: raise ValueError(('Type mismatch ({} vs. {}) ' 'for config key: {}').format(type(b[k]), type(v), k)) # recursively merge dicts if type(v) is edict: try: _merge_a_into_b(a[k], b[k]) except: print(('Error under config key: {}'.format(k))) raise else: b[k] = v def cfg_from_file(filename): """Load a config file and merge it into the default options.""" import yaml with open(filename, 'r') as f: yaml_cfg = edict(yaml.load(f)) _merge_a_into_b(yaml_cfg, __C) def cfg_from_list(cfg_list): """Set config keys via list (e.g., from command line).""" from ast import literal_eval assert len(cfg_list) % 2 == 0 for k, v in zip(cfg_list[0::2], cfg_list[1::2]): key_list = k.split('.') d = __C for subkey in key_list[:-1]: assert subkey in d d = d[subkey] subkey = key_list[-1] assert subkey in d try: value = literal_eval(v) except: # handle the case when v is a string literal value = v assert type(value) == type(d[subkey]), 'type {} does not match original type {}'.format( type(value), type(d[subkey])) d[subkey] = value
blocks = [ resnet_utils.Block('block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block('block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), # Use stride-1 for the last conv4 layer resnet_utils.Block('block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 1)]), resnet_utils.Block('block4', bottleneck, [(2048, 512, 1)] * 3) ]