• 微积分学习笔记五:多元函数微积分


    1、二元函数偏导数定义:设函数z=f(x,y)在点$(x_{0},y_{0})$的某邻域有定义,固定y=$y_{0}$,是x从$x_{0}$变到$x_{0}+Delta x$时,函数的变化为$f(x_{0}+Delta x,y_{0})-f(x_{0},y_{0})$。如果极限
    [lim_{Delta x ightarrow 0}frac{f(x_{0}+Delta x,y_{0})-f(x_{0},y_{0})}{Delta x}]
    存在,则称此极限为z=f(x,y)在$(x_{0},y_{0})$对x的偏导数,记做$frac{partial z}{partial x}|_{y=y_{0}}^{^{x=x_{0}}}$

    2、设函数z=f(x,y)在点$M_{0}(x_{0},y_{0})$的某邻域内存在二阶偏导数$frac{partial z}{partial xpartial y}$和$frac{partial z}{partial ypartial x}$。如果$frac{partial z}{partial xpartial y}$和$frac{partial z}{partial ypartial x}$都在$M_{0}(x_{0},y_{0})$点连续,那么在点$M_{0}$满足
    $frac{partial z}{partial xpartial y}|_{(x_{0},y_{0})}=frac{partial z}{partial ypartial x}|_{(x_{0},y_{0})}$

    3、函数z=f(x,y)在点(x,y) 处的全增量$Delta z=f(x+Delta x,y+Delta y)-f(x,y)$可以表示为$Delta z=ADelta x+BDelta y+o( ho )$。AB不依赖于$Delta x,Delta y$而仅仅与x,y有关,$ ho=sqrt{Delta x^{^{2}}+Delta y^{^{2}}}$。
    若z=f(x,y)在(x,y)可微,那么偏导数存在,且z=f(x,y)在点(x,y)可微。且$A=f^{{'}}_{x}(x,y),B=f^{{'}}_{y}(x,y)$。
    证明:由于可微,所以$Delta z=ADelta x+BDelta y+o( ho )$。当$Delta y=0$时,$ ho=|x_{0}|$,$Delta z=ADelta x+o(|x_{0}|)$,同时除以$Delta x$,两端求极限
    [f_{x}^{^{'}}(x,y)=lim_{Delta x ightarrow 0}frac{Delta z}{Delta x}=lim_{Delta x ightarrow 0}(A+frac{o|Delta x|}{Delta x})=A]
    同理$B=f^{{'}}_{y}(x,y)$。

    4、设函数z=f(x,y)在点$(x_{0},y_{0})$的某邻域内存在偏导数$f_{x}^{^{'}}(x,y),f_{y}^{^{'}}(x,y)$,并且$f_{x}^{^{'}}(x,y),f_{y}^{^{'}}(x,y)$都在点$(x_{0},y_{0})$连续,那么z=f(x,y)在点$(x_{0},y_{0})$可微。
    证明:设
    $Delta z=f(x_{0}+Delta x,y_{0}+Delta y)-f(x_{0},y_{0})$
    $=[f(x_{0}+Delta x,y_{0}+Delta y)-f(x_{0},y_{0}+Delta y)]+[f(x_{0},y_{0}+Delta y)-f(x_{0},y_{0}]$
    将$f(x_{0}+Delta x,y_{0}+Delta y)-f(x_{0},y_{0}+Delta y)$看做x的函数$f(x,y_{0}+Delta y)$在$Delta x$处的增量。由于$f_{x}^{^{'}}(x,y)$在$(x_{0},y_{0})$邻域内存在,所以$f(x,y_{0}+Delta y)$在$Delta X$某邻域内可导,根据微分中值定理,有
    [f(x_{0}+Delta x,y_{0}+Delta y)-f(x_{0},y_{0}+Delta y)=f_{x}^{^{'}}(x_{0}+ heta_{1}Delta x,y_{0}+Delta y)Delta x,(0< heta_{1}<1)]
    同理
    [f(x_{0},y_{0}+Delta y)-f(x_{0},y_{0})=f_{x}^{^{'}}(x_{0},y_{0}+ heta_{2} Delta y)Delta y,(0< heta_{2}<1)]
    而$f_{x}^{^{'}}(x,y),f_{y}^{^{'}}(x,y)$都在点$(x_{0},y_{0})$连续所以
    [lim_{ ho ightarrow 0}f_{x}^{^{'}}(x_{0}+ heta_{1}Delta x,y_{0}+Delta y)=f_{x}^{^{'}}(x_{0},y_{0})]
    [lim_{ ho ightarrow 0}f_{x}^{^{'}}(x_{0},y_{0}+ heta_{2}Delta y)=f_{x}^{^{'}}(x_{0},y_{0})]


    所以存在无穷小$alpha ,eta $,当$ ho ightarrow 0$时,有
    [f_{x}^{^{'}}(x_{0}+ heta_{1}Delta x,y_{0}+Delta y)=f_{x}^{^{'}}(x_{0},y_{0})+alpha]
    [f_{x}^{^{'}}(x_{0},y_{0}+ heta_{2}Delta y)=f_{x}^{^{'}}(x_{0},y_{0})+eta]
    所以
    $Delta z=f_{x}^{^{'}}(x_{0},y_{0})Delta x+f_{y}^{^{'}}(x_{0},y_{0})Delta y+alphaDelta x+etaDelta y$
    由于
    $|frac{alphaDelta x+etaDelta y}{ ho}|$

    $=|frac{alphaDelta x+etaDelta y}{sqrt{Delta x^{^{2}}+Delta y^{^{2}}}}|$
    $leqfrac{|alphaDelta x|}{sqrt{Delta x^{^{2}}+Delta y^{^{2}}}}+frac{|etaDelta y|}{sqrt{Delta x^{^{2}}+Delta y^{^{2}}}}$

    $leq|alpha|+|eta| ightarrow 0$
    所以
    $lim_{ ho ightarrow 0}frac{alphaDelta x+etaDelta y}{ ho}=0$
    即$alphaDelta x+etaDelta y=o( ho)( ho ightarrow 0)$
    所以$Delta z=f_{x}^{^{'}}(x_{0},y_{0})Delta x+f_{y}^{^{'}}(x_{0},y_{0})Delta y+o( ho)$。即z=f(x,y)在$(x_{0},y_{0})$可微。

    5、设函数f(x,y),$varphi (x,y)$都具有连续偏导数,在$varphi (x,y)=0$时求f(x,y)的极值。
    (1)引入拉格朗日乘数$lambda $,$F(x,y,lambda)=f(x,y)+lambda varphi (x,y)$
    (2)求三元函数$F(x,y,lambda)$的驻点,即方程组
    [F_{x}^{^{'}}=f_{x}^{^{'}}(x,y)+lambda varphi _{x}^{^{'}}(x,y)=0]
    [F_{y}^{^{'}}=f_{y}^{^{'}}(x,y)+lambda varphi _{y}^{^{'}}(x,y)=0]
    [F_{lambda}^{^{'}}=varphi(x,y)=0]
    的所有解$(x_{0},y_{0},lambda _{0})$
    (3)判断$(x_{0},y_{0},lambda _{0})$是否为$F(x,y,lambda)$的极值点。

  • 相关阅读:
    谷歌地图地理解析和反解析geocode.geocoder详解(转)
    Html5 Geolocation获取地理位置信息(转)
    利用单片机快速实现家庭智能控制平台
    邪恶改装:TPYBoard制作廉价WIFI干扰器
    [TPYBoard
    [TPYBoard
    [TPYBoard
    python中的subprocess.Popen()使用
    KVM虚拟机的xml配置文件
    Linux LVM 总结
  • 原文地址:https://www.cnblogs.com/jianglangcaijin/p/6035817.html
Copyright © 2020-2023  润新知