1、二元函数偏导数定义:设函数z=f(x,y)在点$(x_{0},y_{0})$的某邻域有定义,固定y=$y_{0}$,是x从$x_{0}$变到$x_{0}+Delta x$时,函数的变化为$f(x_{0}+Delta x,y_{0})-f(x_{0},y_{0})$。如果极限
[lim_{Delta x
ightarrow 0}frac{f(x_{0}+Delta x,y_{0})-f(x_{0},y_{0})}{Delta x}]
存在,则称此极限为z=f(x,y)在$(x_{0},y_{0})$对x的偏导数,记做$frac{partial z}{partial x}|_{y=y_{0}}^{^{x=x_{0}}}$
2、设函数z=f(x,y)在点$M_{0}(x_{0},y_{0})$的某邻域内存在二阶偏导数$frac{partial z}{partial xpartial y}$和$frac{partial z}{partial ypartial x}$。如果$frac{partial z}{partial xpartial y}$和$frac{partial z}{partial ypartial x}$都在$M_{0}(x_{0},y_{0})$点连续,那么在点$M_{0}$满足
$frac{partial z}{partial xpartial y}|_{(x_{0},y_{0})}=frac{partial z}{partial ypartial x}|_{(x_{0},y_{0})}$
3、函数z=f(x,y)在点(x,y) 处的全增量$Delta z=f(x+Delta x,y+Delta y)-f(x,y)$可以表示为$Delta z=ADelta x+BDelta y+o(
ho )$。AB不依赖于$Delta x,Delta y$而仅仅与x,y有关,$
ho=sqrt{Delta x^{^{2}}+Delta y^{^{2}}}$。
若z=f(x,y)在(x,y)可微,那么偏导数存在,且z=f(x,y)在点(x,y)可微。且$A=f^{{'}}_{x}(x,y),B=f^{{'}}_{y}(x,y)$。
证明:由于可微,所以$Delta z=ADelta x+BDelta y+o(
ho )$。当$Delta y=0$时,$
ho=|x_{0}|$,$Delta z=ADelta x+o(|x_{0}|)$,同时除以$Delta x$,两端求极限
[f_{x}^{^{'}}(x,y)=lim_{Delta x
ightarrow 0}frac{Delta z}{Delta x}=lim_{Delta x
ightarrow 0}(A+frac{o|Delta x|}{Delta x})=A]
同理$B=f^{{'}}_{y}(x,y)$。
4、设函数z=f(x,y)在点$(x_{0},y_{0})$的某邻域内存在偏导数$f_{x}^{^{'}}(x,y),f_{y}^{^{'}}(x,y)$,并且$f_{x}^{^{'}}(x,y),f_{y}^{^{'}}(x,y)$都在点$(x_{0},y_{0})$连续,那么z=f(x,y)在点$(x_{0},y_{0})$可微。
证明:设
$Delta z=f(x_{0}+Delta x,y_{0}+Delta y)-f(x_{0},y_{0})$
$=[f(x_{0}+Delta x,y_{0}+Delta y)-f(x_{0},y_{0}+Delta y)]+[f(x_{0},y_{0}+Delta y)-f(x_{0},y_{0}]$
将$f(x_{0}+Delta x,y_{0}+Delta y)-f(x_{0},y_{0}+Delta y)$看做x的函数$f(x,y_{0}+Delta y)$在$Delta x$处的增量。由于$f_{x}^{^{'}}(x,y)$在$(x_{0},y_{0})$邻域内存在,所以$f(x,y_{0}+Delta y)$在$Delta X$某邻域内可导,根据微分中值定理,有
[f(x_{0}+Delta x,y_{0}+Delta y)-f(x_{0},y_{0}+Delta y)=f_{x}^{^{'}}(x_{0}+ heta_{1}Delta x,y_{0}+Delta y)Delta x,(0< heta_{1}<1)]
同理
[f(x_{0},y_{0}+Delta y)-f(x_{0},y_{0})=f_{x}^{^{'}}(x_{0},y_{0}+ heta_{2} Delta y)Delta y,(0< heta_{2}<1)]
而$f_{x}^{^{'}}(x,y),f_{y}^{^{'}}(x,y)$都在点$(x_{0},y_{0})$连续所以
[lim_{
ho
ightarrow 0}f_{x}^{^{'}}(x_{0}+ heta_{1}Delta x,y_{0}+Delta y)=f_{x}^{^{'}}(x_{0},y_{0})]
[lim_{
ho
ightarrow 0}f_{x}^{^{'}}(x_{0},y_{0}+ heta_{2}Delta y)=f_{x}^{^{'}}(x_{0},y_{0})]
所以存在无穷小$alpha ,eta $,当$
ho
ightarrow 0$时,有
[f_{x}^{^{'}}(x_{0}+ heta_{1}Delta x,y_{0}+Delta y)=f_{x}^{^{'}}(x_{0},y_{0})+alpha]
[f_{x}^{^{'}}(x_{0},y_{0}+ heta_{2}Delta y)=f_{x}^{^{'}}(x_{0},y_{0})+eta]
所以
$Delta z=f_{x}^{^{'}}(x_{0},y_{0})Delta x+f_{y}^{^{'}}(x_{0},y_{0})Delta y+alphaDelta x+etaDelta y$
由于
$|frac{alphaDelta x+etaDelta y}{
ho}|$
$=|frac{alphaDelta x+etaDelta y}{sqrt{Delta x^{^{2}}+Delta y^{^{2}}}}|$
$leqfrac{|alphaDelta x|}{sqrt{Delta x^{^{2}}+Delta y^{^{2}}}}+frac{|etaDelta y|}{sqrt{Delta x^{^{2}}+Delta y^{^{2}}}}$
$leq|alpha|+|eta|
ightarrow 0$
所以
$lim_{
ho
ightarrow 0}frac{alphaDelta x+etaDelta y}{
ho}=0$
即$alphaDelta x+etaDelta y=o(
ho)(
ho
ightarrow 0)$
所以$Delta z=f_{x}^{^{'}}(x_{0},y_{0})Delta x+f_{y}^{^{'}}(x_{0},y_{0})Delta y+o(
ho)$。即z=f(x,y)在$(x_{0},y_{0})$可微。
5、设函数f(x,y),$varphi (x,y)$都具有连续偏导数,在$varphi (x,y)=0$时求f(x,y)的极值。
(1)引入拉格朗日乘数$lambda $,$F(x,y,lambda)=f(x,y)+lambda varphi (x,y)$
(2)求三元函数$F(x,y,lambda)$的驻点,即方程组
[F_{x}^{^{'}}=f_{x}^{^{'}}(x,y)+lambda varphi _{x}^{^{'}}(x,y)=0]
[F_{y}^{^{'}}=f_{y}^{^{'}}(x,y)+lambda varphi _{y}^{^{'}}(x,y)=0]
[F_{lambda}^{^{'}}=varphi(x,y)=0]
的所有解$(x_{0},y_{0},lambda _{0})$
(3)判断$(x_{0},y_{0},lambda _{0})$是否为$F(x,y,lambda)$的极值点。