• 最大似然估计和最大后验估计


    本文出处:http://www.cnblogs.com/liliu/archive/2010/11/22/1883702.html

                  http://www.cnblogs.com/liliu/archive/2010/11/24/1886110.html

    最大似然估计(Maximum likelihood estimation)

      最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。

        最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的。下面我们具体描述一下最大似然估计:

        首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独立同分布假设。参数为θ的模型f产生上述采样可表示为

           

    回到上面的“模型已定,参数未知”的说法,此时,我们已知的为,未知为θ,故似然定义为:

       

      在实际应用中常用的是两边取对数,得到公式如下:

         

      其中称为对数似然,而称为平均对数似然。而我们平时所称的最大似然为最大的对数平均似然,即:

       

         举个别人博客中的例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我 们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?很多人马上就有答案了:70%。而其后的理论支撑是什么呢?

        我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜 色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2... 那么Data = (x1,x2,…,x100)。这样,

        P(Data | M)

         = P(x1,x2,…,x100|M)

         = P(x1|M)P(x2|M)…P(x100|M)

         = p^70(1-p)^30.

    那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。

        70p^69(1-p)^30-p^70*30(1-p)^29=0。

        解方程可以得到p=0.7。

    在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。

    假如我们有一组连续变量的采样值(x1,x2,…,xn),我们知道这组数据服从正态分布,标准差已知。请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大?

        P(Data | M) = ?

    根据公式

        

      可得:

      对μ求导可得 ,则最大似然估计的结果为μ=(x1+x2+…+xn)/n

          由上可知最大似然估计的一般求解过程:

      (1) 写出似然函数;

      (2) 对似然函数取对数,并整理;

      (3) 求导数 ;

      (4) 解似然方程

    注意:最大似然估计只考虑某个模型能产生某个给定观察序列的概率。而未考虑该模型本身的概率。这点与贝叶斯估计区别。贝叶斯估计方法将在以后的博文中描述

    本文参考

    http://en.wikipedia.org/wiki/Maximum_likelihood

    http://www.shamoxia.com/html/y2010/1520.html

     

    最大后验估计(MAP)

          最大后验估计是根据经验数据获得对难以观察的量的点估计。与最大似然估计类似,但是最大的不同时,最大后验估计的融入了要估计量的先验分布在其中。故最大后验估计可以看做规则化的最大似然估计。

        首先,我们回顾上篇文章中的最大似然估计,假设x为独立同分布的采样,θ为模型参数,f为我们所使用的模型。那么最大似然估计可以表示为:

         

    现在,假设θ的先验分布为g。通过贝叶斯理论,对于θ的后验分布如下式所示:

         

    最后验分布的目标为:

         

        注:最大后验估计可以看做贝叶斯估计的一种特定形式。

      举例来说:

      假设有五个袋子,各袋中都有无限量的饼干(樱桃口味或柠檬口味),已知五个袋子中两种口味的比例分别是

        樱桃 100%

        樱桃 75% + 柠檬 25%

        樱桃 50% + 柠檬 50%

        樱桃 25% + 柠檬 75%

        柠檬 100%

      如果只有如上所述条件,那问从同一个袋子中连续拿到2个柠檬饼干,那么这个袋子最有可能是上述五个的哪一个?

          我们首先采用最大似然估计来解这个问题,写出似然函数。假设从袋子中能拿出柠檬饼干的概率为p(我们通过这个概率p来确定是从哪个袋子中拿出来的),则似然函数可以写作

      

      由于p的取值是一个离散值,即上面描述中的0,25%,50%,75%,1。我们只需要评估一下这五个值哪个值使得似然函数最大即可,得到为袋子5。这里便是最大似然估计的结果。

    上述最大似然估计有一个问题,就是没有考虑到模型本身的概率分布,下面我们扩展这个饼干的问题。

    假设拿到袋子1或5的机率都是0.1,拿到2或4的机率都是0.2,拿到3的机率是0.4,那同样上述问题的答案呢?这个时候就变MAP了。我们根据公式

       

    写出我们的MAP函数。

       

    根据题意的描述可知,p的取值分别为0,25%,50%,75%,1,g的取值分别为0.1,0.2,0.4,0.2,0.1.分别计算出MAP函数的结果为:0,0.0125,0.125,0.28125,0.1.由上可知,通过MAP估计可得结果是从第四个袋子中取得的最高。

      上述都是离散的变量,那么连续的变量呢?假设为独立同分布的,μ有一个先验的概率分布为。那么我们想根据来找到μ的最大后验概率。根据前面的描述,写出MAP函数为:

       

      此时我们在两边取对数可知。所求上式的最大值可以等同于求

      

      的最小值。求导可得所求的μ为

       

      以上便是对于连续变量的MAP求解的过程。

    在MAP中我们应注意的是:

        MAP与MLE最大区别是MAP中加入了模型参数本身的概率分布,或者说。MLE中认为模型参数本身的概率的是均匀的,即该概率为一个固定值。

  • 相关阅读:
    WinForm 应用程序的打包和部署_简单版(图文)
    WinForm 程序的运行框架与启动流程简介(图文)
    WinForm 实现两个容器之间控件的拖动及排列(图文)
    Web Service 基本概念和技术应用
    Visual Basic不可能消失
    俺是怎样做研究生导师的[ZT]
    细 节 决 定 成 败
    阻碍GIS产业发展的三大问题
    世界第一CEO的人格特征和经营想念【转载】
    [转载]关于创办软件公司的几点思考
  • 原文地址:https://www.cnblogs.com/jiahuaking/p/3851017.html
Copyright © 2020-2023  润新知