综述:Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding
要点:
- MAS仅对数量较少的主效QTL有效,而GS适用于大量微效QTL控制的复杂数量性状。GS根据分布在整个基因组中的大量标记信息来估计个体的遗传价值,而不是像MAS中那样基于少量标记。
- GS由Meuwissen(2001)等人提出,一开始应用于动物,最近才应用作物育种。主要是因为NGS的成本下降(尤其是GBS、RADseq等简化基因组测序的应用),NGS已成为在短时间内检测众多基于DNA序列多态性标记的强大工具,并已成为基因组估计育种(GAB)的强大工具。
-
与表型选择(Phenotypic selction, PS)相比,GS可以增加每年的遗传增益(应用GS估计的每年遗传增益是传统育种的几倍),而且对于具有较长世代或难以评估的性状显得更容易。
-
GS最明显的优势是,从种子或幼苗获得的基因型数据可用于预测成熟个体的表型,而无需在多年和环境中进行广泛的表型评估,从而提高了作物品种的发育速度。
-
GS的应用案例:
S.no. | Species | NGS marker platform | Trait | Population size | Total SNP markers | Prediction accuracy | Model | Software packages | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | Rice | GBS | Grain yield, flowering time | 363 | 73,147 | 0.31–0.63 | RR-BLUP | R package rrBLUP | Spindel et al., 2015 |
2 | Rice | DArTseq | Grain yield, plant height | 343 | 8,336 | 0.54 | G-BLUP, RR-BLUP | BGLR and ASReml R packages | Grenier et al., 2015 |
3 | Wheat | GBS | Stem rust resistance | 365 | 4,040 | 0.61 | G-BLUP B | R package GAPIT | Rutkoski et al., 2014 |
4 | Wheat | GBS | Grain yield, plant height, heading date and pre-harvest sprouting | 365 | 38,412 | 0.54 | BLUP | R package rrBLUP | Heslot et al., 2013 |
5 | Wheat | GBS | Grain yield | 254 | 41,371 | 0.28–0.45 | BLUP | ASReml 3.0 | Poland et al., 2012 |
6 | Wheat | GBS | Yield and yield related traits, protein content | 1127 | 38,893 | 0.20–0.59 | BLUP | rrBLUP version 4.2 | Isidro et al., 2015 |
7 | Wheat | GBS | Fusarium head blight resistance | 273 | 19,992 | 0.4–0.90 | RR-BLUP | R package GAPIT | Arruda et al., 2016 |
8 | Wheat | GBS | Grain yield, protein content and protein yield | 659 | – | 0.19–0.51 | RR-BLUP | R package rrBLUP | Michel et al., 2016 |
9 | Wheat | GBS | Grain yield | 1477 | 81,999 | 0.50 | G-BLUP | R package rrBLUP | Lado et al., 2016 |
10 | Wheat | DArTseq | Grain yield | 803 | – | 0.27–0.36 | G-BLUP | BGLR and ASReml R packages | Pierre et al., 2016 |
11 | Wheat | GBS | Grain yield, Fusarium head blight resistance, softness equivalence and flour yield | 470 | 4858 | 0.35–0.62 | BLUP | BGLR R-package | Hoffstetter et al., 2016 |
12 | Wheat | GBS | Heat and drought stress | 10819 | 40000 | 0.18–0.65 | G-BLUP | BGLR R-package | Crossa et al., 2016 |
13 | Maize | GBS | Drought stress | 3273 | 58 731 | 0.40–0.50 | G-BLUP | BGLR R-package | Zhang et al., 2015 |
14 | Maize | GBS | Grain yield, anthesis date, anthesis-silkimg interval | 504 | 158,281 | 0.51–0.59 | PGBLUP, PRKHS | R Software | Crossa et al., 2013 |
15 | Maize | GBS | Grain yield, anthesis date, anthesis-silkimg interval | 296 | 235,265 | 0.62 | PGBLUP, PRKHS | R software | Crossa et al., 2013 |
16 | Maize | DArTseq | Ear rot disease resistance | 238 | 23.154 Dart-seq markers | 0.25–0.59 | RR-BLUP | R package rrBLUP | dos Santos et al., 2016 |
17 | Soybean | GBS | Yield and other agronomic traits | 301 | 52,349 | 0.43–0.64 | G-BLUP | MissForest R package, TASSEL 5.0 | Jarquín et al., 2014b |
18 | Canola | DArTseq | Flowering time | 182 | 18, 804 | 0.64 | RR-BLUP | R package GAPIT | Raman et al., 2015 |
19 | Alfalfa | GBS | Biomass yield | 190 | 10,000 | 0.66 | BLUP | R package, TAASEL software | Li et al., 2015 |
20 | Alfalfa | GBS | Biomass yield | 278 | 10,000 | 0.50 | SVR | R package rrBLUP, R package BGLR, R package ‘RandomForest | Annicchiarico et al., 2015 |
21 | Miscanthus | RADseq | Phenology, biomass, cell wall composition traits | 138 | 20,000 | 0.57 | BLUP | R package rrBLUP | Slavov et al., 2014 |
22 | Switchgrass | GBS | Biomass yield | 540 | 16,669 | 0.52 | BLUP | glmnet R package, R package rrBLUP | Lipka et al., 2014 |
23 | Grapevine | GBS | Yield and related traits | 800 | 90,000 | 0.50 | RR-BLUP | R package BLR, R package rrBLUP | Fodor et al., 2014 |
24 | Intermediate wheatgrass | GBS | Yield and other agronomic traits | 1126 | 3883 | 0.67 | RR-BLUP | R package rrBLUP, BGLR R-package | Zhang et al., 2016 |
25 | Perennial ryegrass | GBS | Plant herbage dry weight and days-to-heading | 211 | 10,885 | 0.16–0.56 | RR-BLUP | R software | Faville et al., 2016 |
-
限制GS效率和准确性的主要因素:标记类型、密度以及参考群体大小(受高成本基因分型限制)、种群结构(即遗传相关性)
-
种群结构影响:由于亚群之间不同的等位基因频率,种群结构在全基因组关联研究中产生了假的标记-性状关联,这可能会夸大对基因组遗传力的估计以及对基因组预测的偏倚准确性。当训练和验证集中都存在种群结构时,对种群结构的校正会导致基因组预测的准确性显著下降。
-
NGS基因分型比其他已建立的标记平台将GEBV预测的准确度提高了0.1到0.2。示例:RADseq中国芒草(Slavov et al,2014),热带水稻GS开花时间的预测精度为0.63(Spindel et al, 2015年),小麦GS中NGS比DArT标记具更高的准确度(Heslot等,2013)
-
GBS的灵活性,低成本和GEBV预测精度使其成为GS的理想方法,GBS应用于GS模型案例:小麦(Heslot,2013),(Crossa,2013);大豆(Jarquín,2014b)
-
基因分型不再限制GS的预测准确性,但是表型数据的可靠性是实施GS的技术挑战,即基因型-表型差距(GP gap)。精确的表型数据是训练GS模型以准确预测BP GEBV的关键组成部分之一。
-
目前的一些高通量表型(HTP)设施:非侵入性的成像,光谱图像分析,机器人技术和高性能计算设施等。
-
GBS+HTP提高GEBV: