• 【GS文献】测序时代植物复杂性状育种之基因组选择


    综述:Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding

    image.png

    要点:

    • MAS仅对数量较少的主效QTL有效,而GS适用于大量微效QTL控制的复杂数量性状。GS根据分布在整个基因组中的大量标记信息来估计个体的遗传价值,而不是像MAS中那样基于少量标记。
    • GS由Meuwissen(2001)等人提出,一开始应用于动物,最近才应用作物育种。主要是因为NGS的成本下降(尤其是GBS、RADseq等简化基因组测序的应用),NGS已成为在短时间内检测众多基于DNA序列多态性标记的强大工具,并已成为基因组估计育种(GAB)的强大工具。

    image.png

    • 与表型选择(Phenotypic selction, PS)相比,GS可以增加每年的遗传增益(应用GS估计的每年遗传增益是传统育种的几倍),而且对于具有较长世代或难以评估的性状显得更容易。
      image.png

    • GS最明显的优势是,从种子或幼苗获得的基因型数据可用于预测成熟个体的表型,而无需在多年和环境中进行广泛的表型评估,从而提高了作物品种的发育速度。

    • GS的应用案例:

    S.no. Species NGS marker platform Trait Population size Total SNP markers Prediction accuracy Model Software packages Reference
    1 Rice GBS Grain yield, flowering time 363 73,147 0.31–0.63 RR-BLUP R package rrBLUP Spindel et al., 2015
    2 Rice DArTseq Grain yield, plant height 343 8,336 0.54 G-BLUP, RR-BLUP BGLR and ASReml R packages Grenier et al., 2015
    3 Wheat GBS Stem rust resistance 365 4,040 0.61 G-BLUP B R package GAPIT Rutkoski et al., 2014
    4 Wheat GBS Grain yield, plant height, heading date and pre-harvest sprouting 365 38,412 0.54 BLUP R package rrBLUP Heslot et al., 2013
    5 Wheat GBS Grain yield 254 41,371 0.28–0.45 BLUP ASReml 3.0 Poland et al., 2012
    6 Wheat GBS Yield and yield related traits, protein content 1127 38,893 0.20–0.59 BLUP rrBLUP version 4.2 Isidro et al., 2015
    7 Wheat GBS Fusarium head blight resistance 273 19,992 0.4–0.90 RR-BLUP R package GAPIT Arruda et al., 2016
    8 Wheat GBS Grain yield, protein content and protein yield 659 0.19–0.51 RR-BLUP R package rrBLUP Michel et al., 2016
    9 Wheat GBS Grain yield 1477 81,999 0.50 G-BLUP R package rrBLUP Lado et al., 2016
    10 Wheat DArTseq Grain yield 803 0.27–0.36 G-BLUP BGLR and ASReml R packages Pierre et al., 2016
    11 Wheat GBS Grain yield, Fusarium head blight resistance, softness equivalence and flour yield 470 4858 0.35–0.62 BLUP BGLR R-package Hoffstetter et al., 2016
    12 Wheat GBS Heat and drought stress 10819 40000 0.18–0.65 G-BLUP BGLR R-package Crossa et al., 2016
    13 Maize GBS Drought stress 3273 58 731 0.40–0.50 G-BLUP BGLR R-package Zhang et al., 2015
    14 Maize GBS Grain yield, anthesis date, anthesis-silkimg interval 504 158,281 0.51–0.59 PGBLUP, PRKHS R Software Crossa et al., 2013
    15 Maize GBS Grain yield, anthesis date, anthesis-silkimg interval 296 235,265 0.62 PGBLUP, PRKHS R software Crossa et al., 2013
    16 Maize DArTseq Ear rot disease resistance 238 23.154 Dart-seq markers 0.25–0.59 RR-BLUP R package rrBLUP dos Santos et al., 2016
    17 Soybean GBS Yield and other agronomic traits 301 52,349 0.43–0.64 G-BLUP MissForest R package, TASSEL 5.0 Jarquín et al., 2014b
    18 Canola DArTseq Flowering time 182 18, 804 0.64 RR-BLUP R package GAPIT Raman et al., 2015
    19 Alfalfa GBS Biomass yield 190 10,000 0.66 BLUP R package, TAASEL software Li et al., 2015
    20 Alfalfa GBS Biomass yield 278 10,000 0.50 SVR R package rrBLUP, R package BGLR, R package ‘RandomForest Annicchiarico et al., 2015
    21 Miscanthus RADseq Phenology, biomass, cell wall composition traits 138 20,000 0.57 BLUP R package rrBLUP Slavov et al., 2014
    22 Switchgrass GBS Biomass yield 540 16,669 0.52 BLUP glmnet R package, R package rrBLUP Lipka et al., 2014
    23 Grapevine GBS Yield and related traits 800 90,000 0.50 RR-BLUP R package BLR, R package rrBLUP Fodor et al., 2014
    24 Intermediate wheatgrass GBS Yield and other agronomic traits 1126 3883 0.67 RR-BLUP R package rrBLUP, BGLR R-package Zhang et al., 2016
    25 Perennial ryegrass GBS Plant herbage dry weight and days-to-heading 211 10,885 0.16–0.56 RR-BLUP R software Faville et al., 2016
    • 限制GS效率和准确性的主要因素:标记类型、密度以及参考群体大小(受高成本基因分型限制)、种群结构(即遗传相关性)

    • 种群结构影响:由于亚群之间不同的等位基因频率,种群结构在全基因组关联研究中产生了假的标记-性状关联,这可能会夸大对基因组遗传力的估计以及对基因组预测的偏倚准确性。当训练和验证集中都存在种群结构时,对种群结构的校正会导致基因组预测的准确性显著下降。

    • NGS基因分型比其他已建立的标记平台将GEBV预测的准确度提高了0.1到0.2。示例:RADseq中国芒草(Slavov et al,2014),热带水稻GS开花时间的预测精度为0.63(Spindel et al, 2015年),小麦GS中NGS比DArT标记具更高的准确度(Heslot等,2013

    • GBS的灵活性,低成本和GEBV预测精度使其成为GS的理想方法,GBS应用于GS模型案例:小麦(Heslot,2013)(Crossa,2013);大豆(Jarquín,2014b)

    • 基因分型不再限制GS的预测准确性,但是表型数据的可靠性是实施GS的技术挑战,即基因型-表型差距(GP gap)。精确的表型数据是训练GS模型以准确预测BP GEBV的关键组成部分之一。

    • 目前的一些高通量表型(HTP)设施:非侵入性的成像,光谱图像分析,机器人技术和高性能计算设施等。

    • GBS+HTP提高GEBV:
      image.png

  • 相关阅读:
    设计模式——单例模式
    设计模式——工厂模式在开发中的应用(简单计算器)
    设计模式——简单工厂模式—工厂方法模式—抽象工厂模式(比较)
    设计模式——抽象工厂模式
    设计模式——工厂方法模式
    设计模式——简单工厂
    Win7使用初体验
    上传文件夹
    java上传文件夹到oss
    java+上传一个文件夹
  • 原文地址:https://www.cnblogs.com/jessepeng/p/13970149.html
Copyright © 2020-2023  润新知