有K根线是免费的。如果最大花费已知为mx,那么长度大于mx的线都是应该是免费的。
线数量表示为d,那么d ≤ K。mx越小,d越大,随着mx增大,可行性:00000111111。这就满足了决策单调性。
把免费的线的权值设置为1,其他为0,判断mx的可行就是1到N是否有一条权值不超过K的路径。
看样例猜题意系列。。。
/********************************************************* * ------------------ * * author AbyssalFish * **********************************************************/ #include<cstdio> #include<iostream> #include<string> #include<cstring> #include<queue> #include<vector> #include<stack> #include<vector> #include<map> #include<set> #include<algorithm> #include<cmath> #include<numeric> using namespace std; int N, P, K; const int MAX_P = 2e4, MAX_N = 1e3+1; int hd[MAX_N], nx[MAX_P], le[MAX_P], to[MAX_P], ec; #define eachedge int i = hd[u]; ~i; i = nx[i] void add(int u,int v,int l) { le[ec] = l; to[ec] = v; nx[ec] = hd[u]; hd[u] = ec++; } int d[MAX_N]; typedef pair<int,int> pii; #define dst first #define nd second priority_queue<pii,vector<pii>,greater<pii> > q; const int INF = 0x3f3f3f3f; bool dijkstra(int mx) { memset(d+1,0x3f,sizeof(int)*N); q.push(pii(d[N] = 0,N)); while(q.size()){ pii x = q.top(); q.pop(); if(x.dst != d[x.nd]) continue; int u = x.nd; for(eachedge){ int v = to[i], l = (le[i]<=mx?0:1); if(d[v] > d[u]+l){ q.push(pii(d[v] = d[u]+l,v)); } } } return d[1]<=K; } int solve() { if(dijkstra(0)) return 0; if(d[1] >= INF) return -1; int lb = 1e6, ub = 0, md; for(int i = 0; i < ec; i += 2) { lb = min(lb,le[i]); ub = max(ub,le[i]); } while(lb < ub){ md = (lb+ub)>>1; dijkstra(md) ? ub = md: lb = md+1; } return lb; } //#define LOCAL int main() { #ifdef LOCAL freopen("in.txt","r",stdin); #endif scanf("%d%d%d",&N,&P,&K); memset(hd,-1,sizeof(hd)); for(int i = 0; i < P; i++){ int a,b,l; scanf("%d%d%d",&a,&b,&l); add(a,b,l); add(b,a,l); } printf("%d ",solve()); return 0; }