• Java之函数式接口@FunctionalInterface详解(附源码)


    Java之函数式接口@FunctionalInterface详解

    函数式接口的定义

    在java8中,满足下面任意一个条件的接口都是函数式接口:
    1、被@FunctionalInterface注释的接口,满足@FunctionalInterface注释的约束。
    2、没有被@FunctionalInterface注释的接口,但是满足@FunctionalInterface注释的约束
    @FunctionalInterface注释的约束:
    1、接口有且只能有个一个抽象方法,只有方法定义,没有方法体
    2、在接口中覆写Object类中的public方法,不算是函数式接口的方法。

    比如:

    @FunctionalInterface
    interface FunctionalInterfaceTest {
        String getInfo(String input);
    }
    

    函数式接口的实例

    1. lambda表达式
    2. 方法的引用
    3. 已有构造器或方法的引用
    public class Main {
    
        public static void main(String[] args)
                throws ClassNotFoundException,
                IllegalAccessException,
                InstantiationException,
                NoSuchMethodException,
                InvocationTargetException, NoSuchFieldException {
            /**
             * 1、lambda表达式
             * 这种形式最为直观,lambda表达式,接收一个String类型的参数,返回一个String类型的结果。
             * 完全符合函数式接口FunctionInterfaceTest的定义
             */
            FunctionalInterfaceTest fiTest1 = str -> str + " copy";
            /**
             * 2、Main方法当中的functionalInterfaceTestMethod方法接收一个参数,返回一个结果。符合函数式接口
             * FunctionInterfaceTest的定义。
             * 函数式接口只是定义了个方法的约定(接收一个String类型的参数,返回一个String类型的结果),
             * 而对于方法内部进行何种操作则并没有做任何的限制。在这点上,跟java以前的版本中的实现类与接口之间的
             * 关系很类似。不同的是,函数式接口更偏重于计算过程,约束了一个计算过程的输入和输出。
             */
            FunctionalInterfaceTest fiTest2 = Main::functionalInterfaceTestMethod;
            /**
             * 3、构造方法引用
             * 构造函数的结构:接收输入参数,然后返回一个对象。这种约束跟函数式接口的约束很像。
             * 所以只要“输入参数类型”与“输出参数类型”跟FunctionInterfaceTest中的方法约束相同,
             * 就可以创建出FunctionInterfaceTest接口的实例,如下,String的构造方法中有
             * new String(str)的构造方法,所以可以得到实例。
             * 这里存在一个类型推断的问题,JDK的编译器已经帮我们自动找到了只有一个参数,且是String类型的构造方法。
             * 这就是我们直接String::new,没有指定使用哪一个构造方法,却可以创建实例的原因
             */
            FunctionalInterfaceTest fiTest3 = String::new;
    
            System.out.println(useFunctionalInterface("Hello World!", fiTest1));
            System.out.println(useFunctionalInterface("Hello World!", fiTest2));
            System.out.println(useFunctionalInterface("Hello World!", fiTest3));
            System.out.println(useFunctionalInterface("Hello World!", str -> str + " created by lambda in the context"));
            /**
            输出:
            		Hello World! copy
    						Hello World! copy 2 by reference
                Hello World!
    						Hello World! created by lambda in the context
            */
        }
        
      	public static String functionalInterfaceTestMethod(String str) {
            return str + " copy 2 by reference";
        }
    
        public static String useFunctionalInterface(String str, FunctionalInterfaceTest fiT) {
            return fiT.getInfo(str);
        }
    }
    

    常用的封装好的函数式接口

    分别为Function<T, R>, Cosumer<T>, Predicate<T>, Supplier<T>

    /**
     * 常用的函数式接口主要有四种类型,是通过其输入和输出的参数来进行区分的。定义了编码过程中主要的使用场景。
     Function<T,R>
     接收一个T类型的参数,返回一个R类型的结果
    
     Consumer<T>
     接收一个T类型的参数,不返回值
    
     Predicate<T>
     接收一个T类型的参数,返回一个boolean类型的结果
    
     Supplier<T>
     不接受参数,返回一个T类型的结果
     */
    Function<String, String> add_postfix = str -> str + "postfix";
    Consumer<String> print_string = System.out::println;
    Predicate<Integer> judge_positive = n -> n > 0;
    Supplier<String> supplier = () -> "supply";
    List<String> list = Arrays.asList("adfsg", "sdafef", "", "s", "231243", "hgjrepjrg");
    list.stream()
            .map(str -> str + "1")
            .filter(str -> str.length() > 2)
            .sorted((str1, str2) -> str2.compareTo(str1))
            .forEach(System.out::println);
    /**
    	输出:
    			sdafef1
    			hgjrepjrg1
    			adfsg1
    			2312431
    			1234dfgh
    */
    

    此外,对于多参数的情况,Java还封装了BiFunction<T, U, R>, BiConsumer<T, U>, BiPredicate<T, U>。

    // 由于java不能返回多个参数,所以没有BiSupplier
            BiFunction<String, String, String> combine_string = (str1, str2) -> str1 + str2;
            BiConsumer<String, String> print_two_string = (str1, str2) -> System.out.println(str1 + str2);
            BiPredicate<String, String> str_equal = String::equals;
            int bif_result = biFunctionTestMethod("abs", "pdf", (str1, str2) -> str1.length() + str2.length());
            biConsumerTestMethod("1234", "dfgh", (str1, str2) -> System.out.println(str1 + str2));
            boolean bip_result_1 = biPredictTestMethod("abc", "abc", str_equal),
                    bip_result_2 = biPredictTestMethod("abc", "def", str_equal);
            System.out.println(bif_result);
            System.out.println(bip_result_1);
            System.out.println(bip_result_2);
    /*
    		输出:
    				6
    				true
    				false
    */
    

    在此之外,还有compose和andThen方法,其本质就是数学当中的符合函数,唯一的区别:对于函数(f(x),g(x)),compose等价于(f(g(x))),andThen等价于(g(f(x))),就是执行顺序不同而已。

    // compose 和 andThen
    Function<String, String> compose_function = ((Function<String, String>) (str -> str + "abc")).compose((Function<String, String>) (str -> str + str.length()));
    System.out.println("Compose function: " + compose_function.apply("Hello World! "));
    Function<String, String> andThen_function = ((Function<String, String>) (str -> str + "abc")).andThen((Function<String, String>) (str -> str + str.length()));
    System.out.println("AndThen function: " + andThen_function.apply("Hello World! "));
    // Bicosumer, cosumer, bifunction 都有类似功能
    
    // BiPredicate, Predicate 的 and, or, negate
    System.out.println(str_equal.negate().test("a", "a")); // false
    System.out.println(judge_positive.and(n -> n > 2).test(5)); // true
    System.out.println(judge_positive.or(n -> n < -1).test(-10)); // true
    

    源码

    Function.java

    /**
     * Represents a function that accepts one argument and produces a result.
     *
     * <p>This is a <a href="package-summary.html">functional interface</a>
     * whose functional method is {@link #apply(Object)}.
     *
     * @param <T> the type of the input to the function
     * @param <R> the type of the result of the function
     *
     * @since 1.8
     */
    @FunctionalInterface
    public interface Function<T, R> {
    
        /**
         * Applies this function to the given argument.
         *
         * @param t the function argument
         * @return the function result
         */
        R apply(T t);
    
        /**
         * Returns a composed function that first applies the {@code before}
         * function to its input, and then applies this function to the result.
         * If evaluation of either function throws an exception, it is relayed to
         * the caller of the composed function.
         *
         * @param <V> the type of input to the {@code before} function, and to the
         *           composed function
         * @param before the function to apply before this function is applied
         * @return a composed function that first applies the {@code before}
         * function and then applies this function
         * @throws NullPointerException if before is null
         *
         * @see #andThen(Function)
         */
        default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
            Objects.requireNonNull(before);
            return (V v) -> apply(before.apply(v));
        }
    
        /**
         * Returns a composed function that first applies this function to
         * its input, and then applies the {@code after} function to the result.
         * If evaluation of either function throws an exception, it is relayed to
         * the caller of the composed function.
         *
         * @param <V> the type of output of the {@code after} function, and of the
         *           composed function
         * @param after the function to apply after this function is applied
         * @return a composed function that first applies this function and then
         * applies the {@code after} function
         * @throws NullPointerException if after is null
         *
         * @see #compose(Function)
         */
        default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
            Objects.requireNonNull(after);
            return (T t) -> after.apply(apply(t));
        }
    
        /**
         * Returns a function that always returns its input argument.
         *
         * @param <T> the type of the input and output objects to the function
         * @return a function that always returns its input argument
         */
        static <T> Function<T, T> identity() {
            return t -> t;
        }
    }
    

    Consumer.java

    /**
     * Represents an operation that accepts a single input argument and returns no
     * result. Unlike most other functional interfaces, {@code Consumer} is expected
     * to operate via side-effects.
     *
     * <p>This is a <a href="package-summary.html">functional interface</a>
     * whose functional method is {@link #accept(Object)}.
     *
     * @param <T> the type of the input to the operation
     *
     * @since 1.8
     */
    @FunctionalInterface
    public interface Consumer<T> {
    
        /**
         * Performs this operation on the given argument.
         *
         * @param t the input argument
         */
        void accept(T t);
    
        /**
         * Returns a composed {@code Consumer} that performs, in sequence, this
         * operation followed by the {@code after} operation. If performing either
         * operation throws an exception, it is relayed to the caller of the
         * composed operation.  If performing this operation throws an exception,
         * the {@code after} operation will not be performed.
         *
         * @param after the operation to perform after this operation
         * @return a composed {@code Consumer} that performs in sequence this
         * operation followed by the {@code after} operation
         * @throws NullPointerException if {@code after} is null
         */
        default Consumer<T> andThen(Consumer<? super T> after) {
            Objects.requireNonNull(after);
            return (T t) -> { accept(t); after.accept(t); };
        }
    }
    

    Predicate.java

    /**
     * Represents a predicate (boolean-valued function) of one argument.
     *
     * <p>This is a <a href="package-summary.html">functional interface</a>
     * whose functional method is {@link #test(Object)}.
     *
     * @param <T> the type of the input to the predicate
     *
     * @since 1.8
     */
    @FunctionalInterface
    public interface Predicate<T> {
    
        /**
         * Evaluates this predicate on the given argument.
         *
         * @param t the input argument
         * @return {@code true} if the input argument matches the predicate,
         * otherwise {@code false}
         */
        boolean test(T t);
    
        /**
         * Returns a composed predicate that represents a short-circuiting logical
         * AND of this predicate and another.  When evaluating the composed
         * predicate, if this predicate is {@code false}, then the {@code other}
         * predicate is not evaluated.
         *
         * <p>Any exceptions thrown during evaluation of either predicate are relayed
         * to the caller; if evaluation of this predicate throws an exception, the
         * {@code other} predicate will not be evaluated.
         *
         * @param other a predicate that will be logically-ANDed with this
         *              predicate
         * @return a composed predicate that represents the short-circuiting logical
         * AND of this predicate and the {@code other} predicate
         * @throws NullPointerException if other is null
         */
        default Predicate<T> and(Predicate<? super T> other) {
            Objects.requireNonNull(other);
            return (t) -> test(t) && other.test(t);
        }
    
        /**
         * Returns a predicate that represents the logical negation of this
         * predicate.
         *
         * @return a predicate that represents the logical negation of this
         * predicate
         */
        default Predicate<T> negate() {
            return (t) -> !test(t);
        }
    
        /**
         * Returns a composed predicate that represents a short-circuiting logical
         * OR of this predicate and another.  When evaluating the composed
         * predicate, if this predicate is {@code true}, then the {@code other}
         * predicate is not evaluated.
         *
         * <p>Any exceptions thrown during evaluation of either predicate are relayed
         * to the caller; if evaluation of this predicate throws an exception, the
         * {@code other} predicate will not be evaluated.
         *
         * @param other a predicate that will be logically-ORed with this
         *              predicate
         * @return a composed predicate that represents the short-circuiting logical
         * OR of this predicate and the {@code other} predicate
         * @throws NullPointerException if other is null
         */
        default Predicate<T> or(Predicate<? super T> other) {
            Objects.requireNonNull(other);
            return (t) -> test(t) || other.test(t);
        }
    
        /**
         * Returns a predicate that tests if two arguments are equal according
         * to {@link Objects#equals(Object, Object)}.
         *
         * @param <T> the type of arguments to the predicate
         * @param targetRef the object reference with which to compare for equality,
         *               which may be {@code null}
         * @return a predicate that tests if two arguments are equal according
         * to {@link Objects#equals(Object, Object)}
         */
        static <T> Predicate<T> isEqual(Object targetRef) {
            return (null == targetRef)
                    ? Objects::isNull
                    : object -> targetRef.equals(object);
        }
    
        /**
         * Returns a predicate that is the negation of the supplied predicate.
         * This is accomplished by returning result of the calling
         * {@code target.negate()}.
         *
         * @param <T>     the type of arguments to the specified predicate
         * @param target  predicate to negate
         *
         * @return a predicate that negates the results of the supplied
         *         predicate
         *
         * @throws NullPointerException if target is null
         *
         * @since 11
         */
        @SuppressWarnings("unchecked")
        static <T> Predicate<T> not(Predicate<? super T> target) {
            Objects.requireNonNull(target);
            return (Predicate<T>)target.negate();
        }
    }
    

    Supplier.java

    /**
     * Represents a supplier of results.
     *
     * <p>There is no requirement that a new or distinct result be returned each
     * time the supplier is invoked.
     *
     * <p>This is a <a href="package-summary.html">functional interface</a>
     * whose functional method is {@link #get()}.
     *
     * @param <T> the type of results supplied by this supplier
     *
     * @since 1.8
     */
    @FunctionalInterface
    public interface Supplier<T> {
    
        /**
         * Gets a result.
         *
         * @return a result
         */
        T get();
    }
    
  • 相关阅读:
    Angular7 表单
    使用Angular2的Http发送AJAX请求
    Nginx配置SSL证书实现https访问「浏览器未认证」
    详解 Nginx如何配置Web服务器
    前后端分离不可缺少的神器 NGINX
    程序员的快速开发框架:Github上 10 大优秀的开源后台控制面板
    腾讯出品的一个超棒的 Android UI 库
    Vue 旅游网首页开发1-工具安装及码云使用
    Angular routing生成路由和路由的跳转
    Angular 父子组件传值
  • 原文地址:https://www.cnblogs.com/jeffersonqin/p/12253457.html
Copyright © 2020-2023  润新知