• 机器学习环境配置系列五之keras2


    keras一个大坑就是配置文件的问题,网上会给很多的误导,让我走了很多弯路。

    1、安装keras2

    conda install keras

    2、环境配置

    echo ‘{
        "epsilon": 1e-07,
        "floatx": "float32",
        "image_data_format": "channels_last",
        "backend": "theano"
    }’> ~/.keras/keras.json

    如果用的tensorflow,backend要更换为tensorflow这个变量

    3、问题说明

    关于环境配置网上大多是1.几的版本,这个与2点几的版本有很大的区别,请大家一定注意。并且keras上了2这个版本后,代码也出现了很多的变化。下面就是对vgg16.py代码关于python2.7+keras2的代码更新

    from __future__ import division, print_function
    
    import os, json
    from glob import glob
    import numpy as np
    from scipy import misc, ndimage
    from scipy.ndimage.interpolation import zoom
    
    from keras import backend as K
    from keras.layers.normalization import BatchNormalization
    from keras.utils.data_utils import get_file
    from keras.models import Sequential
    from keras.layers.core import Flatten, Dense, Dropout, Lambda
    #from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
    from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D  # Conv2D: Keras2
    from keras.layers.pooling import GlobalAveragePooling2D
    from keras.optimizers import SGD, RMSprop, Adam
    from keras.preprocessing import image
    
    # In case we are going to use the TensorFlow backend we need to explicitly set the Theano image ordering
    from keras import backend as K
    K.set_image_dim_ordering('th')
    
    
    vgg_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32).reshape((3,1,1))
    def vgg_preprocess(x):
        """
            Subtracts the mean RGB value, and transposes RGB to BGR.
            The mean RGB was computed on the image set used to train the VGG model.
    
            Args: 
                x: Image array (height x width x channels)
            Returns:
                Image array (height x width x transposed_channels)
        """
        x = x - vgg_mean
        return x[:, ::-1] # reverse axis rgb->bgr
    
    
    class Vgg16():
        """
            The VGG 16 Imagenet model
        """
    
    
        def __init__(self):
            self.FILE_PATH = 'http://files.fast.ai/models/'
            self.create()
            self.get_classes()
    
    
        def get_classes(self):
            """
                Downloads the Imagenet classes index file and loads it to self.classes.
                The file is downloaded only if it not already in the cache.
            """
            fname = 'imagenet_class_index.json'
            fpath = get_file(fname, self.FILE_PATH+fname, cache_subdir='models')
            with open(fpath) as f:
                class_dict = json.load(f)
            self.classes = [class_dict[str(i)][1] for i in range(len(class_dict))]
    
        def predict(self, imgs, details=False):
            """
                Predict the labels of a set of images using the VGG16 model.
    
                Args:
                    imgs (ndarray)    : An array of N images (size: N x width x height x channels).
                    details : ??
                
                Returns:
                    preds (np.array) : Highest confidence value of the predictions for each image.
                    idxs (np.ndarray): Class index of the predictions with the max confidence.
                    classes (list)   : Class labels of the predictions with the max confidence.
            """
            # predict probability of each class for each image
            all_preds = self.model.predict(imgs)
            # for each image get the index of the class with max probability
            idxs = np.argmax(all_preds, axis=1)
            # get the values of the highest probability for each image
            preds = [all_preds[i, idxs[i]] for i in range(len(idxs))]
            # get the label of the class with the highest probability for each image
            classes = [self.classes[idx] for idx in idxs]
            return np.array(preds), idxs, classes
    
    
        def ConvBlock(self, layers, filters):
            """
                Adds a specified number of ZeroPadding and Covolution layers
                to the model, and a MaxPooling layer at the very end.
    
                Args:
                    layers (int):   The number of zero padded convolution layers
                                    to be added to the model.
                    filters (int):  The number of convolution filters to be 
                                    created for each layer.
            """
            model = self.model
            for i in range(layers):
                model.add(ZeroPadding2D((1, 1)))
                # model.add(Convolution2D(filters, 3, 3, activation='relu'))
            model.add(Conv2D(filters, kernel_size=(3, 3), activation='relu'))
            model.add(MaxPooling2D((2, 2), strides=(2, 2)))
    
    
        def FCBlock(self):
            """
                Adds a fully connected layer of 4096 neurons to the model with a
                Dropout of 0.5
    
                Args:   None
                Returns:   None
            """
            model = self.model
            model.add(Dense(4096, activation='relu'))
            model.add(Dropout(0.5))
    
    
        def create(self):
            """
                Creates the VGG16 network achitecture and loads the pretrained weights.
    
                Args:   None
                Returns:   None
            """
            model = self.model = Sequential()
            model.add(Lambda(vgg_preprocess, input_shape=(3,224,224), output_shape=(3,224,224)))
    
            self.ConvBlock(2, 64)
            self.ConvBlock(2, 128)
            self.ConvBlock(3, 256)
            self.ConvBlock(3, 512)
            self.ConvBlock(3, 512)
    
            model.add(Flatten())
            self.FCBlock()
            self.FCBlock()
            model.add(Dense(1000, activation='softmax'))
    
            fname = 'vgg16.h5'
            model.load_weights(get_file(fname, self.FILE_PATH+fname, cache_subdir='models'))
    
    
        def get_batches(self, path, gen=image.ImageDataGenerator(), shuffle=True, batch_size=8, class_mode='categorical'):
            """
                Takes the path to a directory, and generates batches of augmented/normalized data. Yields batches indefinitely, in an infinite loop.
    
                See Keras documentation: https://keras.io/preprocessing/image/
            """
            return gen.flow_from_directory(path, target_size=(224,224),
                    class_mode=class_mode, shuffle=shuffle, batch_size=batch_size)
    
    
        def ft(self, num):
            """
                Replace the last layer of the model with a Dense (fully connected) layer of num neurons.
                Will also lock the weights of all layers except the new layer so that we only learn
                weights for the last layer in subsequent training.
    
                Args:
                    num (int) : Number of neurons in the Dense layer
                Returns:
                    None
            """
            model = self.model
            model.pop()
            for layer in model.layers: layer.trainable=False
            model.add(Dense(num, activation='softmax'))
            self.compile()
    
        def finetune(self, batches):
          
        self.ft(batches.num_classes)
            classes = list(iter(batches.class_indices)) # get a list of all the class labels
            
            # batches.class_indices is a dict with the class name as key and an index as value
            # eg. {'cats': 0, 'dogs': 1}
    
            # sort the class labels by index according to batches.class_indices and update model.classes
            for c in batches.class_indices:
                classes[batches.class_indices[c]] = c
            self.classes = classes
    
    
        def compile(self, lr=0.001):
            """
                Configures the model for training.
                See Keras documentation: https://keras.io/models/model/
            """
            self.model.compile(optimizer=Adam(lr=lr),
                    loss='categorical_crossentropy', metrics=['accuracy'])
    
    
        def fit_data(self, trn, labels,  val, val_labels,  nb_epoch=1, batch_size=64):
            """
                Trains the model for a fixed number of epochs (iterations on a dataset).
                See Keras documentation: https://keras.io/models/model/
            """
            #self.model.fit(trn, labels, nb_epoch=nb_epoch,
            #        validation_data=(val, val_labels), batch_size=batch_size)
        self.model.fit(trn, labels, epochs=nb_epoch,
                    validation_data=(val, val_labels), batch_size=batch_size)
    
        #def fit(self, batches, val_batches, nb_epoch=1):
        def fit(self, batches, val_batches, batch_size, nb_epoch=1):
            """
                Fits the model on data yielded batch-by-batch by a Python generator.
                See Keras documentation: https://keras.io/models/model/
            """
            #self.model.fit_generator(batches, samples_per_epoch=batches.nb_sample, nb_epoch=nb_epoch,
            #        validation_data=val_batches, nb_val_samples=val_batches.nb_sample)
        self.model.fit_generator(batches, steps_per_epoch=int(np.ceil(batches.samples/batch_size)), epochs=nb_epoch,
                    validation_data=val_batches, validation_steps=int(np.ceil(val_batches.samples/batch_size)))
    
        def test(self, path, batch_size=8):
            """
                Predicts the classes using the trained model on data yielded batch-by-batch.
    
                Args:
                    path (string):  Path to the target directory. It should contain one subdirectory 
                                    per class.
                    batch_size (int): The number of images to be considered in each batch.
                
                Returns:
                    test_batches, numpy array(s) of predictions for the test_batches.
        
            """
            test_batches = self.get_batches(path, shuffle=False, batch_size=batch_size, class_mode=None)
            #return test_batches, self.model.predict_generator(test_batches, test_batches.nb_sample)
        return test_batches, self.model.predict_generator(test_batches, int(np.ceil(test_batches.samples/batch_size)))
  • 相关阅读:
    sae-xhprof调试性能
    VC++常用函数
    C++资料收集&整理
    C++宽窄字符串转换
    #MySQL for Python(MySQLdb) Note
    VC++ ADO相关
    MFC各种控件的常见操作(逐步添加中......)
    关于Sql注入的那些事
    Python中socket经ssl加密后server开多线程
    网络编程
  • 原文地址:https://www.cnblogs.com/jaww/p/9846312.html
Copyright © 2020-2023  润新知