Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
- You may assume the interval's end point is always bigger than its start point.
- Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ] Output: 1 Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [ [1,2], [1,2], [1,2] ] Output: 2 Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [ [1,2], [2,3] ] Output: 0 Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
这个题目和 http://www.cnblogs.com/javanerd/p/6068552.html 这道题目差不多,都可以对一个interval线段数组进行排序,然后用滑动窗口来解。
但是,因为涉及到一些比较复杂的条件判断,所以排序以后,直接用了双层循环去两两比较,同时用一个boolean数组记录出已经被踢出去的线段,用来提高效率。
代码如下:
public int eraseOverlapIntervals(Interval[] intervals) { if (intervals.length == 0 || intervals.length == 1) { return 0; } else { int result = 0; int[] mark = new int[intervals.length]; Arrays.fill(mark, 0); Arrays.sort(intervals, (o1, o2) -> { if (o1.start == o2.start) { return o2.end - o1.end; } else { return o1.start - o2.start; } }); //按照start从小到大,然后end从大到小排序. for (int i = 0; i < intervals.length - 1; i++) { if (mark[i] != 1) { for (int j = i + 1; j < intervals.length; j++) { if (mark[j] == 1) { continue; } else { Interval left = intervals[i]; Interval right = intervals[j]; if (left.start == right.start) { //如果两个线段start一样,那么删掉end比较大的那个. mark[i] = 1; result++; break; } else if (left.end > right.start) { //如果两个线段有折叠 result++; if (left.end <= right.end) { //如果右边的线段的end比较大,那么删掉右边线段,同时往后移动一位,继续比较下一个. mark[j] = 1; } else { mark[i] = 1; //如果左边的线段的end比较大,那么删掉左边的.同时结束内存循环. break; } } else { // left.end <= right.start,因为已经排序了,那么后面的start必然都比left.end大,提前终止循环 break; } } } } } return result; } }