• hadoop详细笔记(十七) 将MapReduce程序提交到Yarn上运行


    1 windows上
    System.setProperty("HADOOP_USER_NAME", "root");
    Configuration conf = new Configuration();
    // 设置访问的集群的位置
    conf.set("fs.defaultFS", "hdfs://doit01:9000");
    // 设置yarn的位置
    conf.set("mapreduce.framework.name", "yarn");
    // yarn的resourcemanager的位置
    conf.set("yarn.resourcemanager.hostname", "doit01");
    // 设置MapReduce程序运行在windows上的跨平台参数
    conf.set("mapreduce.app-submission.cross-platform","true");
    job.setJar() ;
    package com._51doit.yarn.wc;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

    /**
    * @Auther: 多易教育-行哥
    * @Date: 2020/7/10
    * @Description:
    * 1 运行模式 默认是local 设置运行在yarn上
    * 2 yarn的位置 resourcemanage
    * 3 读取数据 HDFS
    * 4 用户名
    * 5 跨平台参数
    *
    */
    public class WordCountDriver {
    public static void main(String[] args) throws Exception {
    // 1 配置对象
    System.setProperty("HADOOP_USER_NAME", "root");
    Configuration conf = new Configuration();
    // 设置访问文件系统
    conf.set("fs.defaultFS", "hdfs://linux01:9000");
    // 设置MR程序运行模式 yarn
    conf.set("mapreduce.framework.name", "yarn");
    // yarn的resourcemanager的位置
    conf.set("yarn.resourcemanager.hostname", "linux01");
    // 设置MapReduce程序运行在windows上的跨平台参数
    conf.set("mapreduce.app-submission.cross-platform","true");
    // 2 创建任务对象
    Job job = Job.getInstance(conf, "wc");
    job.setJar("C:\Users\ThinkPad\Desktop\demo.jar");
    job.setJarByClass(WordCountDriver.class);
    // 2.1 设置 map和reduce任务类
    job.setMapperClass(WordCountMapper.class);
    job.setReducerClass(WordCountReducer.class);
    //2.2 设置map和reduce 的输出KV
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    // 2.3 设置reduce的个数 默认1
    job.setNumReduceTasks(2);
    // 2.3 设置输入和输出路径
    FileInputFormat.setInputPaths(job,new Path("/data/wc/"));
    FileOutputFormat.setOutputPath(job,new Path("/data/wc_res"));
    // 3 提交任务 等待程序执行完毕 返回值是否成功
    boolean b = job.waitForCompletion(true);
    System.exit(b?0:-1);
    }
    }
    打包程序到指定的目录中

    2 linux上
    打包程序,将jar包上传到Linux操作系统

     

    package com._51doit.yarn.wc;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

    /**
    * @Auther: 多易教育-行哥
    * @Date: 2020/7/10
    * @Description:
    * 1 运行模式 默认是local 设置运行在yarn上
    * 2 yarn的位置 resourcemanage
    * 3 读取数据 HDFS
    * 4 用户名
    * 5 跨平台参数
    *
    */
    public class WordCountDriver {
    public static void main(String[] args) throws Exception {
    // 1 配置对象
    // System.setProperty("HADOOP_USER_NAME", "root");
    Configuration conf = new Configuration();
    // 设置访问文件系统
    //conf.set("fs.defaultFS", "hdfs://linux01:9000");
    // 设置MR程序运行模式 yarn
    conf.set("mapreduce.framework.name", "yarn");
    // yarn的resourcemanager的位置
    conf.set("yarn.resourcemanager.hostname", "linux01");
    // 设置MapReduce程序运行在windows上的跨平台参数
    // conf.set("mapreduce.app-submission.cross-platform","true");
    // 2 创建任务对象
    Job job = Job.getInstance(conf, "wc");
    // job.setJar("C:\Users\ThinkPad\Desktop\demo.jar");
    job.setJarByClass(WordCountDriver.class);
    // 2.1 设置 map和reduce任务类
    job.setMapperClass(WordCountMapper.class);
    job.setReducerClass(WordCountReducer.class);
    //2.2 设置map和reduce 的输出KV
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    // 2.3 设置reduce的个数 默认1
    job.setNumReduceTasks(2);
    // 2.3 设置输入和输出路径
    FileInputFormat.setInputPaths(job,new Path("/data/wc/"));
    FileOutputFormat.setOutputPath(job,new Path("/data/wc_res"));
    // 3 提交任务 等待程序执行完毕 返回值是否成功
    boolean b = job.waitForCompletion(true);
    System.exit(b?0:-1);
    }
    }
    在配置了HADOOP环境变量的机器上执行命令 运行MR程序

    hadoop jar /demo.jar com._51doit.yarn.wc.WordCountDriver

    20/07/14 14:41:46 INFO client.RMProxy: Connecting to ResourceManager at linux01/192.168.133.201:8032
    20/07/14 14:41:47 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
    20/07/14 14:41:47 INFO input.FileInputFormat: Total input files to process : 1
    20/07/14 14:41:48 INFO mapreduce.JobSubmitter: number of splits:1
    20/07/14 14:41:48 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1594624386350_0003 非本地模式
    20/07/14 14:41:48 INFO impl.YarnClientImpl: Submitted application application_1594624386350_0003
    20/07/14 14:41:48 INFO mapreduce.Job: The url to track the job: http://linux01:8088/proxy/application_1594624386350_0003/
    20/07/14 14:41:48 INFO mapreduce.Job: Running job: job_1594624386350_0003

    在yarn监控页面可以查看到任务

     


    ————————————————
    版权声明:本文为CSDN博主「白眼黑刺猬」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/qq_37933018/article/details/107337603

  • 相关阅读:
    红黑树(RBTree)
    js闭包简要分析
    html 5的localstorag
    浅析CSS中的haslayout
    初识sass框架
    BFC块级格式化上下文简述
    RESTful互联网框架
    javascript的框架演化
    浅析angular框架的cookie
    angular template浅析
  • 原文地址:https://www.cnblogs.com/javalinux/p/15094638.html
Copyright © 2020-2023  润新知