• 由二叉树构造赫夫曼树


    赫夫曼树:
    如果有n个权值{w1,w2,w3....},试构造一棵具有n个叶子节点的二叉树,每一个叶子节点带权为wi。则当中带权路径长度最小的二叉树称为最优二叉树或者叫赫夫曼树
    构造赫夫曼树:
    如果有n个权值,则构造出的赫夫曼树有n个叶子节点,n个权值分别设置为w1,w2,....wn,则赫夫曼树的构造规则为:
    1.将w1,w2...看成是有n棵树的森林;
    2.在森林中选择两个根节点的权值最小的树合并,作为一棵新树的左右子树,且新树的根节点权值为其左右子树根节点权值之和;
    3.从森林中删除选取的两棵树,并将新树增加森林。
    4.反复2、3步,直到森林中仅仅剩一棵树为止。该树即为所求得的赫夫曼树。

    实现:
    以数组形式存储赫夫曼树节点,节点形态:

    /**************************************************
    构造赫夫曼树
    by Rowandjj
    2014/6/2
    **************************************************/
    #include<IOSTREAM>
    using namespace std;
    
    #define UINT_MAX 0xffffffff
    
    typedef struct _BITREE_//二叉树
    {
        int data;//存放节点的圈中
        struct _BITREE_ *lChild;
        struct _BITREE_ *rChild;
    }Bitree,*pBitree;
    
    typedef struct _HUFFMANTREE_//赫夫曼树
    {
        unsigned int weight;
        unsigned int parent;
        unsigned int lChild;
        unsigned int rChild;
    }HuffmanTree,*pHuffmanTree;
    
    int iCount = 0;//叶子节点数
    int iIndex = 1;//索引
    
    //-----------------------------------------
    
    void CreateBiTree(pBitree* pBitreeTemp);//创建二叉树
    void CreatreArray(pHuffmanTree& pHuffmanTreeTemp,pBitree pBitreeTemp);//将二叉树每一个节点的值作为权放进赫夫曼树中
    pHuffmanTree InitHuffmanTree();//初始化赫夫曼树,
    void CreateHuffmanTree(pHuffmanTree& pHuffmanTreeTemp);//创建赫夫曼树
    int GetNode(pHuffmanTree& pHuffmanTreeTemp,int i);//获取赫夫曼树中位置0-i中值最小的节点的索引
    void SelectNode(pHuffmanTree& pHuffmanTreeTemp,int i,int *m,int *n);//选择赫夫曼树数组中值最小的两个节点的索引(不包括已有父节点的节点)
    void DestroyTree(pBitree* pBitreeTemp);
    void DestroyHuffmanTree(pHuffmanTree& pHuffmanTreeTemp);
    int main()
    {
        int i;
        //创建二叉树
        pBitree pBitreeTemp;
        CreateBiTree(&pBitreeTemp);
        //初始化赫夫曼树
        pHuffmanTree pHuffmanTreeTemp = InitHuffmanTree();
    
        //初始化赫夫曼树的叶子节点的权
        CreatreArray(pHuffmanTreeTemp,pBitreeTemp);
        for(i = 1; i <= iCount ; i++)
        {
            cout<<pHuffmanTreeTemp[i].weight<<" ";
        }
        cout<<endl;
        //创建赫夫曼树
        CreateHuffmanTree(pHuffmanTreeTemp);
        for(i = 1; i <= 2*iCount-1 ; i++)
        {
            cout<<pHuffmanTreeTemp[i].weight<<" ";
        }
        cout<<endl;
    
        DestroyTree(&pBitreeTemp);
        DestroyHuffmanTree(pHuffmanTreeTemp);
        return 0;
    }
    
    void CreateBiTree(pBitree* pBitreeTemp)
    {
        int data;
        cin>>data;
        if(data == -1)
        {
            return;
        }
        *pBitreeTemp = (pBitree)malloc(sizeof(Bitree));
        if(*pBitreeTemp == NULL)
        {
            return;
        }
        (*pBitreeTemp)->data = data;
        (*pBitreeTemp)->lChild = NULL;
        (*pBitreeTemp)->rChild = NULL;
    
        CreateBiTree(&(*pBitreeTemp)->lChild);
        CreateBiTree(&(*pBitreeTemp)->rChild);
    
        iCount++;
    }
    pHuffmanTree InitHuffmanTree()
    {
        int num = 2*iCount - 1;//赫夫曼树的节点总数为:叶子节点数*2-1
        pHuffmanTree pTemp = (pHuffmanTree)malloc(sizeof(HuffmanTree)*(num+1));//0位不存
        if(pTemp == NULL)
        {
            return NULL;
        }
        for(int i = 0; i <= num; i++)
        {
            pTemp[i].lChild = 0;
            pTemp[i].rChild = 0;
            pTemp[i].parent = 0;
            pTemp[i].weight = 0;
        }
        return pTemp;
    }
    void CreatreArray(pHuffmanTree& pHuffmanTreeTemp,pBitree pBitreeTemp)
    {
        if(pBitreeTemp == NULL || pHuffmanTreeTemp == NULL)
        {
            return;
        }
        pHuffmanTreeTemp[iIndex].weight = pBitreeTemp->data;
        iIndex++;
        CreatreArray(pHuffmanTreeTemp,pBitreeTemp->lChild);
        CreatreArray(pHuffmanTreeTemp,pBitreeTemp->rChild);
    }
    int GetNode(pHuffmanTree& pHuffmanTreeTemp,int i)
    {
        int min = UINT_MAX;
        int flag;
        for(int j = 1; j <= i; j++)
        {
            if(pHuffmanTreeTemp[j].weight < min && pHuffmanTreeTemp[j].parent == 0)//已有父节点的不算
            {
                min = pHuffmanTreeTemp[j].weight;
                flag = j;
            }
        }
        pHuffmanTreeTemp[flag].parent = 1;//防止两次调用获取的索引同样
        return flag;
    }
    void SelectNode(pHuffmanTree& pHuffmanTreeTemp,int i,int *m,int *n)//m为序号小的那个
    {
        *m = GetNode(pHuffmanTreeTemp,i);
        *n = GetNode(pHuffmanTreeTemp,i);
    
        int t;
        if(*m > *n)
        {
            t = *m;
            *m = *n;
            *n = t;
        }
    }
    
    void CreateHuffmanTree(pHuffmanTree& pHuffmanTreeTemp)
    {
        if(pHuffmanTreeTemp == NULL)
        {
            return;
        }
        int m = 0,n = 0;
        for(int i = iCount+1;i <= 2*iCount-1; i++)
        {
            SelectNode(pHuffmanTreeTemp,i-1,&m,&n);
            pHuffmanTreeTemp[m].parent = pHuffmanTreeTemp[n].parent = i;
            //构造两个最小权重的节点的父节点
            pHuffmanTreeTemp[i].lChild = m;
            pHuffmanTreeTemp[i].rChild = n;
            pHuffmanTreeTemp[i].weight = pHuffmanTreeTemp[m].weight+pHuffmanTreeTemp[n].weight;
        }
    
    }
    
    void DestroyTree(pBitree* pBitreeTemp)
    {
        if(*pBitreeTemp == NULL)
        {
            return;
        }
        if((*pBitreeTemp)->lChild)
        {
            DestroyTree(&(*pBitreeTemp)->lChild);
        }
        if((*pBitreeTemp)->rChild)
        {
            DestroyTree(&(*pBitreeTemp)->rChild);
        }
        free(*pBitreeTemp);
        *pBitreeTemp = NULL;
    }
    
    void DestroyHuffmanTree(pHuffmanTree& pHuffmanTreeTemp)
    {
        if(pHuffmanTreeTemp)
        {
            free(pHuffmanTreeTemp);
        }
        pHuffmanTreeTemp = NULL;
    }
    測试:
    图解构造过程:
    1.首先将二叉树中的节点所有存到代表赫夫曼树的数组中。其余位置为0:

    2.循环遍历该数组。每次找到最小权重的两个节点。之和作为其父节点的权重

    3.循环一遍后。便得到赫夫曼树:





  • 相关阅读:
    英语46级CET外语大学词汇
    TOEFL词汇笔记英语托福英语
    19道常见的JS面试算法题
    Vue.js---指令与事件、语法糖
    Qt--多线程间的互斥
    const关键字总结
    Numpy和Pandas的使用入门
    python爬虫爬取天气数据并图形化显示
    JCEF-鼠标右键菜单
    JCEF-tab形式展示浏览器
  • 原文地址:https://www.cnblogs.com/blfbuaa/p/6877674.html
Copyright © 2020-2023  润新知