• POJ_3020_最小路径覆盖


    Antenna Placement
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 8721   Accepted: 4330

    Description

    The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 
     
    Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered? 

    Input

    On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space. 

    Output

    For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

    Sample Input

    2
    7 9
    ooo**oooo
    **oo*ooo*
    o*oo**o**
    ooooooooo
    *******oo
    o*o*oo*oo
    *******oo
    10 1
    *
    *
    *
    o
    *
    *
    *
    *
    *
    *
    

    Sample Output

    17
    5

    最小路径匹配=点数—最大匹配数。
    最后最大匹配数为匈牙利算法求得结果的一半,原因是建的图为无向图。
    此题建模的思想可以学习借鉴。
    #include<iostream>
    #include<cstring>
    #include<queue>
    #include<cstdio>
    #include<map>
    using namespace std;
    
    int dir[4][2]= {-1,0,0,1,1,0,0,-1};
    int mapp[45][15];
    int bimap[410][410],link[410];
    int vis[410];
    int cnt=1,m,n;
    
    bool inside(int x,int y)
    {
        if(x>=0&&x<n&&y>=0&&y<m)
            return 1;
        return 0;
    }
    bool dfs(int x)
    {
        for(int i=1; i<cnt; i++)
            if(bimap[x][i]&&!vis[i])
            {
                vis[i]=1;
                if(link[i]==-1||dfs(link[i]))
                {
                    link[i]=x;
                    return true;
                }
            }
        return false;
    }
    
    int ans;
    void solve()
    {
        memset(link,-1,sizeof(link));
        for(int i=1; i<cnt; i++)
        {
            memset(vis,0,sizeof(vis));
            if(dfs(i))
                ans++;
        }
    }
    
    int main()
    {
        int t;
        scanf("%d",&t);
        getchar();
        while(t--)
        {
            cnt=1;
            memset(mapp,0,sizeof(mapp));
            memset(bimap,0,sizeof(bimap));
            scanf("%d%d",&n,&m);
            getchar();
            for(int i=0; i<n; i++)
            {
                for(int j=0; j<m; j++)
                {
                    char ch;
                    scanf("%c",&ch);
    
                    if(ch=='*')
                        mapp[i][j]=cnt++;
                    else
                        mapp[i][j]=0;
                }
                getchar();
            }
            for(int i=0; i<n; i++)
                for(int j=0; j<m; j++)
                {
                    if(mapp[i][j]>0)
                        for(int k=0; k<4; k++)
                        {
                            int xx=i+dir[k][0];
                            int yy=j+dir[k][1];
                            if(mapp[xx][yy]&&inside(xx,yy))
                            {
                                bimap[mapp[i][j]][mapp[xx][yy]]=1;
                                //bimap[mapp[xx][yy]][mapp[i][j]]=1;
                            }
                        }
                }
            ans=0;
            solve();
            //cout<<ans<<endl;
            printf("%d
    ",cnt-1-ans/2);
        }
        return 0;
    }
  • 相关阅读:
    数据结构(四十)平衡二叉树(AVL树)
    数据结构(三十九)二叉排序树
    数据结构(三十八)静态查找表(顺序查找、二分查找、插值查找、斐波那契查找、线性索引查找)
    数据结构(三十七)查找的基本概念
    数据结构(三十六)关键路径
    数据结构(三十五)拓扑排序
    数据结构(三十四)最短路径(Dijkstra、Floyd)
    数据结构(三十三)最小生成树(Prim、Kruskal)
    字符串匹配算法之KMP
    最长公共子序列(Longest common subsequence)
  • 原文地址:https://www.cnblogs.com/jasonlixuetao/p/5747293.html
Copyright © 2020-2023  润新知