• 函数


    ------------以下截图来自马哥教育和廖雪峰的教学

       数学定义:y=f(x)   , y就是x的函数    ,x是自变量

       函数是可调用对象,可以用callable(函数名)来验证。

      调用函数:函数名(参数):

      参数:与外界沟通的接口

      参数分为:形参和实参

      一般在函数定义的时候使用的参数是形参;

      一般在函数调用的时候使用的参数是实参。

      注意!

      在传参时:位置参数必须在关键字参数前传入,因为位置参数是按照位置对应的。

      

      Python内置了很多有用的函数,我们可以直接调用。

    要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数abs,只有一个参数。可以直接从Python的官方网站查看文档:

    http://docs.python.org/3/library/functions.html#abs

    也可以在交互式命令行通过help(abs)查看abs函数的帮助信息。

    调用abs函数:

    >>> abs(100)
    100
    >>> abs(-20)
    20
    >>> abs(12.34)
    12.34

    调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且Python会明确地告诉你:abs()有且仅有1个参数,但给出了两个:

    >>> abs(1, 2)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: abs() takes exactly one argument (2 given)

    如果传入的参数数量是对的,但参数类型不能被函数所接受,也会报TypeError的错误,并且给出错误信息:str是错误的参数类型:

    >>> abs('a')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: bad operand type for abs(): 'str'

    max函数max()可以接收任意多个参数,并返回最大的那个:

    >>> max(1, 2)
    2
    >>> max(2, 3, 1, -5)
    3

    数据类型转换

    Python内置的常用函数还包括数据类型转换函数,比如int()函数可以把其他数据类型转换为整数:

    >>> int('123')
    123
    >>> int(12.34)
    12
    >>> float('12.34')
    12.34
    >>> str(1.23)
    '1.23'
    >>> str(100)
    '100'
    >>> bool(1)
    True
    >>> bool('')
    False

    函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个“别名”:

    >>> a = abs # 变量a指向abs函数
    >>> a(-1) # 所以也可以通过a调用abs函数
    1

    在Python中,定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。

    我们以自定义一个求绝对值的my_abs函数为例:

    def my_abs(x):
        if x >= 0:
            return x
        else:
            return -x

    请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。

    如果没有return语句,函数执行完毕后也会返回结果,只是结果为Nonereturn None可以简写为return

    在Python交互环境中定义函数时,注意Python会出现...的提示。函数定义结束后需要按两次回车重新回到>>>提示符下:

    │>>> def my_abs(x):                                      │
    │...     if x >= 0:                                      │
    │...         return x                                    │
    │...     else:                                           │
    │...         return -x                                   │
    │...                                                     │
    │>>> my_abs(-9)                                          │
    │9                                                       │
    │>>> _                                                   │
    │                  

    如果你已经把my_abs()的函数定义保存为abstest.py文件了,那么,可以在该文件的当前目录下启动Python解释器,用from abstest import my_abs来导入my_abs()函数,注意abstest是文件名(不含.py扩展名):

    │>>> from abstest import my_abs                          │
    │>>> my_abs(-9)                                          │
    │9                                                       │
    │>>> _                                                   │
    │                                                        │
    │            

     

    空函数

    如果想定义一个什么事也不做的空函数,可以用pass语句:

    def nop():
        pass

    pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。

    pass还可以用在其他语句里,比如:

    if age >= 18:
        pass

    缺少了pass,代码运行就会有语法错误。

    参数检查

    调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError

    >>> my_abs(1, 2)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: my_abs() takes 1 positional argument but 2 were given

    但是如果参数类型不对,Python解释器就无法帮我们检查。试试my_abs和内置函数abs的差别:

    >>> my_abs('A')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "<stdin>", line 2, in my_abs
    TypeError: unorderable types: str() >= int()
    >>> abs('A')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: bad operand type for abs(): 'str'

    当传入了不恰当的参数时,内置函数abs会检查出参数错误,而我们定义的my_abs没有参数检查,会导致if语句出错,出错信息和abs不一样。所以,这个函数定义不够完善。

    让我们修改一下my_abs的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance()实现:

    def my_abs(x):
        #添加检查判断选项
        if not isinstance(x, (int, float)):
            raise TypeError("类型错误")
        #正文,判断参数x不同的范围对应返回不同的值
        if x >= 0:
            return x
        else:
            return -x

    添加了参数检查后,如果传入错误的参数类型,函数就可以抛出一个错误:

    >>> my_abs('A')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "<stdin>", line 3, in my_abs
    TypeError: bad operand type

    错误和异常处理将在后续讲到。

    返回多个值

    函数可以返回多个值吗?答案是肯定的。

    比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的新的坐标:

    import math
    
    def move(x, y, step, angle=0):
        nx = x + step * math.cos(angle)
        ny = y - step * math.sin(angle)
        return nx, ny

    import math语句表示导入math包,并允许后续代码引用math包里的sincos等函数。

    然后,我们就可以同时获得返回值:

    >>> x, y = move(100, 100, 60, math.pi / 6)
    >>> print(x, y)
    151.96152422706632 70.0

    但其实这只是一种假象,Python函数返回的仍然是单一值:

    >>> r = move(100, 100, 60, math.pi / 6)
    >>> print(r)
    (151.96152422706632, 70.0)

    原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。

    小结

    定义函数时,需要确定函数名和参数个数;

    如果有必要,可以先对参数的数据类型做检查;

    函数体内部可以用return随时返回函数结果;

    函数执行完毕也没有return语句时,自动return None

    函数可以同时返回多个值,但其实就是一个tuple。

    x = 32
    
    
    def f1():
        x = 43
        print(x)
    
    
    print(f1())  # 变量x在函数作用域后就消失了,作用范围只有函数内部
    
    print(x)  # 在模块中声明的变量x,作用范围是整个模块

    但是:

    x = 32
    
    
    def f1():
        y = 43
        print(x, y)
    
    
    print(f1())  # 局部函数可以调用全局函数的变量

    如果调用全局函数,需要:

    x = 32
    
    
    def f1():
        global x
        x = 43  # 调用全局函数的变量需要用到global
    
        print(x)
    
    
    print(f1())

    定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

    Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

    位置参数

    我们先写一个计算x2的函数:

    def power(x):
        return x * x

    对于power(x)函数,参数x就是一个位置参数。

    当我们调用power函数时,必须传入有且仅有的一个参数x

    >>> power(5)
    25
    >>> power(15)
    225

    现在,如果我们要计算x3怎么办?可以再定义一个power3函数,但是如果要计算x4、x5……怎么办?我们不可能定义无限多个函数。

    你也许想到了,可以把power(x)修改为power(x, n),用来计算xn,说干就干:

    def power(x, n):
        s = 1
        while n > 0:
            n = n - 1
            s = s * x
        return s

    对于这个修改后的power(x, n)函数,可以计算任意n次方:

    >>> power(5, 2)
    25
    >>> power(5, 3)
    125

    修改后的power(x, n)函数有两个参数:xn,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数xn

    默认参数

      默认参数要和关键字参数区别开来,默认参数等于在函数定义时就给了一个默认值,在传参时可以省略不传参,也可以重新赋值传参。

      关键字参数是在传参时给位置参数直接赋值,并且可以在位置参数传参后,随意调整位置传参。

      例如:

    def add(x,y,z):
        sum = x + y +z
        return sum
    
    my_sum = add(8 , z=9 , y=7) # 8是位置参数,需要先传入给x,而y=7和z=9是关键字参数,可以随意调整位置。
    
    #然而
    
    def add(x, y = 7 , z = 9): #在函数定义时,x为位置参数要在前面,而 y=7,z=9为缺省值参数,要往后放,*但是,缺省值参数也是位置参数,可以理解为给了缺省值的位置参数。
        sum = x + y +z
        return sum
    my_sum = add(8 , z = 10) #在add函数定义时,就给了默认参数y = 7,z=9在传参时,8就给了位置参数x,y因为有默认值,没有更改需求就可以省略,而z想要更改值就直接用关键字参数z=10来覆盖掉缺省值参数z=9。

    新的power(x, n)函数定义没有问题,但是,旧的调用代码失败了,原因是我们增加了一个参数,导致旧的代码因为缺少一个参数而无法正常调用:

    >>> power(5)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: power() missing 1 required positional argument: 'n'

    Python的错误信息很明确:调用函数power()缺少了一个位置参数n

    这个时候,默认参数就排上用场了。由于我们经常计算x2,所以,完全可以把第二个参数n的默认值设定为2:

    def power(x, n=2):
        s = 1
        while n > 0:
            n = n - 1
            s = s * x
        return s

    这样,当我们调用power(5)时,相当于调用power(5, 2)

    >>> power(5)
    25
    >>> power(5, 2)
    25

    而对于n > 2的其他情况,就必须明确地传入n,比如power(5, 3)

    从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:

    一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);

    二是如何设置默认参数。

    当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。

    使用默认参数有什么好处?最大的好处是能降低调用函数的难度。

    举个例子,我们写个一年级小学生注册的函数,需要传入namegender两个参数:

    def enroll(name, gender):
        print('name:', name)
        print('gender:', gender)

    这样,调用enroll()函数只需要传入两个参数:

    >>> enroll('Sarah', 'F')
    name: Sarah
    gender: F

    如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。

    我们可以把年龄和城市设为默认参数:

    def enroll(name, gender, age=6, city='Beijing'):
        print('name:', name)
        print('gender:', gender)
        print('age:', age)
        print('city:', city)

    这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:

    >>> enroll('Sarah', 'F')
    name: Sarah
    gender: F
    age: 6
    city: Beijing

    只有与默认参数不符的学生才需要提供额外的信息:

    enroll('Bob', 'M', 7)
    enroll('Adam', 'M', city='Tianjin')

    可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调用还是复杂调用,函数只需要定义一个。

    有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enroll('Bob', 'M', 7),意思是,除了namegender这两个参数外,最后1个参数应用在参数age上,city参数由于没有提供,仍然使用默认值。

    也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll('Adam', 'M', city='Tianjin'),意思是,city参数用传进去的值,其他默认参数继续使用默认值。

    默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:

    先定义一个函数,传入一个list,添加一个END再返回:

    def add_end(L=[]):
        L.append('END')
        return L

    当你正常调用时,结果似乎不错:

    >>> add_end([1, 2, 3])
    [1, 2, 3, 'END']
    >>> add_end(['x', 'y', 'z'])
    ['x', 'y', 'z', 'END']

    当你使用默认参数调用时,一开始结果也是对的:

    >>> add_end()
    ['END']

    但是,再次调用add_end()时,结果就不对了:

    >>> add_end()
    ['END', 'END']
    >>> add_end()
    ['END', 'END', 'END']

    很多初学者很疑惑,默认参数是[],但是函数似乎每次都“记住了”上次添加了'END'后的list。

    原因解释如下:

    Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。

     定义默认参数要牢记一点:默认参数必须指向不变对象!

    要修改上面的例子,我们可以用None这个不变对象来实现:

    def add_end(L=None):
        if L is None:
            L = []
        L.append('END')
        return L

    现在,无论调用多少次,都不会有问题:

    >>> add_end()
    ['END']
    >>> add_end()
    ['END']

    为什么要设计strNone这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

    可变参数

    在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。

    我们以数学题为例子,给定一组数字a,b,c……,请计算a2 + b2 + c2 + ……。

    要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c……作为一个list或tuple传进来,这样,函数可以定义如下:

    def calc(numbers):
        sum = 0
        for n in numbers:
            sum = sum + n * n
        return sum

    但是调用的时候,需要先组装出一个list或tuple:

    >>> calc([1, 2, 3])
    14
    >>> calc((1, 3, 5, 7))
    84

    如果利用可变参数,调用函数的方式可以简化成这样:

    >>> calc(1, 2, 3)
    14
    >>> calc(1, 3, 5, 7)
    84

    所以,我们把函数的参数改为可变参数:

    def calc(*numbers):
        sum = 0
        for n in numbers:
            sum = sum + n * n
        return sum

    定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:

    >>> calc(1, 2)
    5
    >>> calc()
    0

    如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:

    >>> nums = [1, 2, 3]
    >>> calc(nums[0], nums[1], nums[2])
    14

    这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*号,把list或tuple的元素变成可变参数传进去:

    >>> nums = [1, 2, 3]
    >>> calc(*nums)
    14

    *nums表示把nums这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。

    关键字参数

    可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:

    def person(name, age, **kw):
        print('name:', name, 'age:', age, 'other:', kw)

    函数person除了必选参数nameage外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

    >>> person('Michael', 30)
    name: Michael age: 30 other: {}

    也可以传入任意个数的关键字参数:

    >>> person('Bob', 35, city='Beijing')
    name: Bob age: 35 other: {'city': 'Beijing'}
    >>> person('Adam', 45, gender='M', job='Engineer')
    name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

    关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到nameage这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

    和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

    >>> extra = {'city': 'Beijing', 'job': 'Engineer'}
    >>> person('Jack', 24, city=extra['city'], job=extra['job'])
    name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

    当然,上面复杂的调用可以用简化的写法:

    >>> extra = {'city': 'Beijing', 'job': 'Engineer'}
    >>> person('Jack', 24, **extra)
    name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

    **extra表示把extra这个dict的所有key-value用关键字参数传入到函数的**kw参数,kw将获得一个dict,注意kw获得的dict是extra的一份拷贝,对kw的改动不会影响到函数外的extra

    keyword-only参数:

      如果在一个星号(*)参数后面,或者一个位置可变参数后面,出现的普通参数,实际上已经不是普通的参数了,而是keyword-only参数。

      

    def  fn(*args , x):
        print(x)
        print(args)
    
    fn(3 , 5 , x = 7)  # args可以看做已经截获了所有的位置参数,X不使用关键字参数就不可以拿到实参。

       还有一种特殊情况,举例:

    def fn(*, x , y):
        print(x)
        print(y)
    
    fn(x = 7 , y = 8)

    上段代码中,*后面的X,Y只能是keyword-only参数,可以理解成:

    def fn(*args, x , y)

    命名关键字参数(keyword-only参数

    对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw检查。

    仍以person()函数为例,我们希望检查是否有cityjob参数:

    def person(name, age, **kw):
        if 'city' in kw:
            # 有city参数
            pass
        if 'job' in kw:
            # 有job参数
            pass
        print('name:', name, 'age:', age, 'other:', kw)

    但是调用者仍可以传入不受限制的关键字参数:

    >>> person('Jack', 24, city='Beijing', addr='Chaoyang', zipcode=123456)

    如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收cityjob作为关键字参数。这种方式定义的函数如下:

    def person(name, age, *, city, job):
        print(name, age, city, job)

    和关键字参数**kw不同,命名关键字参数需要一个特殊分隔符**后面的参数被视为命名关键字参数。

    调用方式如下:

    >>> person('Jack', 24, city='Beijing', job='Engineer')
    Jack 24 Beijing Engineer

    如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*了:

    def person(name, age, *args, city, job):
        print(name, age, args, city, job)

    命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错:

    >>> person('Jack', 24, 'Beijing', 'Engineer')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: person() takes 2 positional arguments but 4 were given

    由于调用时缺少参数名cityjob,Python解释器把这4个参数均视为位置参数,但person()函数仅接受2个位置参数。

    命名关键字参数可以有缺省值,从而简化调用:

    def person(name, age, *, city='Beijing', job):
        print(name, age, city, job)

    由于命名关键字参数city具有默认值,调用时,可不传入city参数:

    >>> person('Jack', 24, job='Engineer')
    Jack 24 Beijing Engineer

    使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个*作为特殊分隔符。如果缺少*,Python解释器将无法识别位置参数和命名关键字参数:

    def person(name, age, city, job):
        # 缺少 *,city和job被视为位置参数
        pass

    参数组合

    参数列表中参数定义的一般顺序是:def xxx(普通参数、缺省值参数(默认参数)、可变位置参数(可变参数)、keyword-only参数(命名关键字参数(可以带缺省值))、关键字参数、可变关键字参数)

    在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。

    注意:

      代码应该易读易懂,而不是为难别人和自己;

      请按照书写习惯定义函数参数。

    比如定义一个函数,包含上述若干种参数:

    def f1(a, b, c=0, *args, **kw):
        print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)
    
    def f2(a, b, c=0, *, d, **kw):
        print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)

    在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。

    >>> f1(1, 2)
    a = 1 b = 2 c = 0 args = () kw = {}
    >>> f1(1, 2, c=3)
    a = 1 b = 2 c = 3 args = () kw = {}
    >>> f1(1, 2, 3, 'a', 'b')
    a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
    >>> f1(1, 2, 3, 'a', 'b', x=99)
    a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
    >>> f2(1, 2, d=99, ext=None)
    a = 1 b = 2 c = 0 d = 99 kw = {'ext': None}

    最神奇的是通过一个tuple和dict,你也可以调用上述函数:

    >>> args = (1, 2, 3, 4)
    >>> kw = {'d': 99, 'x': '#'}
    >>> f1(*args, **kw)
    a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'}
    >>> args = (1, 2, 3)
    >>> kw = {'d': 88, 'x': '#'}
    >>> f2(*args, **kw)
    a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}

    所以,对于任意函数,都可以通过类似func(*args, **kw)的形式调用它,无论它的参数是如何定义的。

    虽然可以组合多达5种参数,但不要同时使用太多的组合,否则函数接口的可理解性很差。

    在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

    举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:

    fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n

    所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。

    于是,fact(n)用递归的方式写出来就是:

    def fact(n):
        if n==1:
            return 1
        return n * fact(n - 1)

    上面就是一个递归函数。可以试试:

    >>> fact(1)
    1
    >>> fact(5)
    120
    >>> fact(100)
    93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000

    如果我们计算fact(5),可以根据函数定义看到计算过程如下:

    ===> fact(5)
    ===> 5 * fact(4)
    ===> 5 * (4 * fact(3))
    ===> 5 * (4 * (3 * fact(2)))
    ===> 5 * (4 * (3 * (2 * fact(1))))
    ===> 5 * (4 * (3 * (2 * 1)))
    ===> 5 * (4 * (3 * 2))
    ===> 5 * (4 * 6)
    ===> 5 * 24
    ===> 120

    递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

    使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000)

    >>> fact(1000)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "<stdin>", line 4, in fact
      ...
      File "<stdin>", line 4, in fact
    RuntimeError: maximum recursion depth exceeded in comparison

    递归函数

     

    在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

    举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:

    fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n

    所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。

    于是,fact(n)用递归的方式写出来就是:

    def fact(n):
        if n==1:
            return 1
        return n * fact(n - 1)
    

    上面就是一个递归函数。可以试试:

    >>> fact(1)
    1
    >>> fact(5)
    120
    >>> fact(100)
    93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
    

    如果我们计算fact(5),可以根据函数定义看到计算过程如下:

    ===> fact(5)
    ===> 5 * fact(4)
    ===> 5 * (4 * fact(3))
    ===> 5 * (4 * (3 * fact(2)))
    ===> 5 * (4 * (3 * (2 * fact(1))))
    ===> 5 * (4 * (3 * (2 * 1)))
    ===> 5 * (4 * (3 * 2))
    ===> 5 * (4 * 6)
    ===> 5 * 24
    ===> 120
    

    递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

    使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000)

    >>> fact(1000)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "<stdin>", line 4, in fact
      ...
      File "<stdin>", line 4, in fact
    RuntimeError: maximum recursion depth exceeded in comparison
    

    解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

    尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

    上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

    def fact(n):
        return fact_iter(n, 1)
    
    def fact_iter(num, product):
        if num == 1:
            return product
        return fact_iter(num - 1, num * product)

    可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1num * product在函数调用前就会被计算,不影响函数调用。

    fact(5)对应的fact_iter(5, 1)的调用如下:

    ===> fact_iter(5, 1)
    ===> fact_iter(4, 5)
    ===> fact_iter(3, 20)
    ===> fact_iter(2, 60)
    ===> fact_iter(1, 120)
    ===> 120

    尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

    遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。

    小结

    使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

    针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

    Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。

    练习

    汉诺塔的移动可以用递归函数非常简单地实现。

    请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A、B、C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的方法,例如:

    # 汉诺塔
    def move(n, a, b, c):
        if n == 1:
            print(a, "-->", c)
        else:
            move(n - 1, a, c, b)
            print(a, "-->", c)
            move(n - 1, b, a, c)
    
    
    n = int(input("请输入汉诺塔的层数:"))
    move(n, "a", "b", "c")
    
    
    
  • 相关阅读:
    docker swarm使用keepalived+haproxy搭建基于percona-xtradb-cluster方案的高可用mysql集群
    docker搭建基于percona-xtradb-cluster方案的mysql集群
    flask实现基于elasticsearch的关键词搜索建议
    tcp === udp
    re 模块===正则表达式
    模块===包
    析构方法====
    python===属性--类方法
    python====接口类 抽象类===19
    python==继承===18
  • 原文地址:https://www.cnblogs.com/jameskane/p/8538755.html
Copyright © 2020-2023  润新知