参考文献:
http://www.autonlab.org/tutorials/gaussbc12.pdf
python代码如下:
import numpy as np from sklearn.utils import array2d from sklearn.utils.extmath import logsumexp import random import matplotlib.pylab as plt class GaussianBayes: def __init__(self): pass def train(self, x, y): n_samples, n_features = x.shape if(n_samples != y.shape[0]): raise ValueError('x and y have incompatible shapes.') self._classes = unique_y = np.unique(y) n_classes = unique_y.shape[0] self._theta = np.zeros((n_classes, n_features)) self._sigma = np.zeros((n_classes, n_features)) self._class_prior = np.zeros(n_classes) epsilon = 1e-9 for i, y_i in enumerate(unique_y): self._theta[i, :] = np.mean(x[y == y_i, :], axis = 0) self._sigma[i, :] = np.var(x[y == y_i, :]) + epsilon self._class_prior[i] = np.float(np.sum(y == y_i)) / n_samples return self def predict(self, x): prob = self.predict_proba(x) indexs = [] scores = [] for ele in prob: index = np.argmax(ele) score = ele[index] indexs.append(index) scores.append(score) return [indexs, scores] def predict_log_prob(self, x): joint = self.joint_log_likelihood(x) #log_like_x = np.log(np.sum(np.exp(joint))) log_like_x = logsumexp(joint, axis = 1) return joint - np.atleast_2d(log_like_x).T def predict_proba(self, x): return np.exp(self.predict_log_prob(x)) def joint_log_likelihood(self, x): x = array2d(x) joint_log_likelihood = [] for i in xrange(np.size(self._classes)): jointi = np.log(self._class_prior[i]) n_ij = - 0.5 * np.sum(np.log(np.pi * self._sigma[i, :])) n_ij -= 0.5 * np.sum(((x - self._theta[i, :]) ** 2) / (self._sigma[i, :]), 1) joint_log_likelihood.append(jointi + n_ij) joint_log_likelihood = np.array(joint_log_likelihood).T return joint_log_likelihood def samples(n_samples, n_features = 10, classes = 5, rat = 0.2): x = np.zeros((n_samples, n_features)) y = np.zeros((n_samples, 1)) num = int(n_samples / classes) for i in range(0, classes): x[i*num:i*num + num] = np.random.random((num,n_features)) + i for i in range(0, x.shape[0]): y[i, 0] = int(i / num) index = np.arange(0, x.shape[0]) random.shuffle(index) train_index = index[0: int((1-rat) * x.shape[0])] test_index = index[int((1-rat) * x.shape[0]):-1] train_x = x[train_index, :] train_y = y[train_index] test_x = x[test_index, :] test_y = y[test_index] return [train_x, train_y, test_x, test_y] def plotRes(pre, real, test_x): s = set(pre) col = ['r','b','g','y','m'] fig = plt.figure() pre = np.array(pre) ax = fig.add_subplot(111) for i in range(0, len(s)): index1 = pre == i index2 = real == i x1 = test_x[index1, :] x2 = test_x[index2, :] ax.scatter(x1[:,0],x1[:,1],color=col[i],marker='v',linewidths=0.5) ax.scatter(x2[:,0],x2[:,1],color=col[i],marker='.',linewidths=12) plt.title('The prediction of the Gaussian Bayes') plt.legend(('c1:predict','c1:true', 'c2:predict','c2:true', 'c3:predict','c3:true', 'c4:predict','c4:true', 'c5:predict','c5:true'), shadow = True, loc = (0.01, 0.4)) plt.show() if __name__ == '__main__': [train_x, train_y, test_x, test_y] = samples(2000, 30, 5) gb = GaussianBayes() gb.train(train_x, train_y) pred_y = gb.predict(test_x) plotRes(pred_y[0], test_y.ravel(), test_x)
预测结果如下: