• 高斯贝叶斯分类器


    参考文献:

    http://www.autonlab.org/tutorials/gaussbc12.pdf

    python代码如下:

    import numpy as np
    from sklearn.utils import array2d
    from sklearn.utils.extmath import logsumexp
    import random
    import matplotlib.pylab as plt
    class GaussianBayes:
        def __init__(self):
            pass
        def train(self, x, y):
            n_samples, n_features = x.shape
            if(n_samples != y.shape[0]):
                raise ValueError('x and y have incompatible shapes.')
            self._classes = unique_y = np.unique(y)
            n_classes = unique_y.shape[0]
            self._theta = np.zeros((n_classes, n_features))
            self._sigma = np.zeros((n_classes, n_features))
            self._class_prior = np.zeros(n_classes)
            epsilon = 1e-9
            for i, y_i in enumerate(unique_y):
                self._theta[i, :] = np.mean(x[y == y_i, :], axis = 0)
                self._sigma[i, :] = np.var(x[y == y_i, :]) + epsilon
                self._class_prior[i] = np.float(np.sum(y == y_i)) / n_samples
            return self
        def predict(self, x):
            prob = self.predict_proba(x)
            indexs = []
            scores = []
            for ele in prob:
                index = np.argmax(ele)
                score = ele[index]
                indexs.append(index)
                scores.append(score)
            return [indexs, scores]
        def predict_log_prob(self, x):
            joint = self.joint_log_likelihood(x)
            #log_like_x = np.log(np.sum(np.exp(joint)))
            log_like_x = logsumexp(joint, axis = 1)
            return joint - np.atleast_2d(log_like_x).T
        def predict_proba(self, x):
            return np.exp(self.predict_log_prob(x))
        def joint_log_likelihood(self, x):
            x = array2d(x)
            joint_log_likelihood = []
            for i in xrange(np.size(self._classes)):
                jointi = np.log(self._class_prior[i])
                n_ij = - 0.5 * np.sum(np.log(np.pi * self._sigma[i, :]))
                n_ij -= 0.5 * np.sum(((x - self._theta[i, :]) ** 2) /
                                     (self._sigma[i, :]), 1)
                joint_log_likelihood.append(jointi + n_ij)
    
            joint_log_likelihood = np.array(joint_log_likelihood).T
            return joint_log_likelihood
            
    def samples(n_samples, n_features = 10, classes = 5, rat = 0.2):
        x = np.zeros((n_samples, n_features))
        y = np.zeros((n_samples, 1))
        num = int(n_samples / classes)
        for i in range(0, classes):
            x[i*num:i*num + num] = np.random.random((num,n_features)) + i
    
        for i in range(0, x.shape[0]):
            y[i, 0] = int(i / num)
        index = np.arange(0, x.shape[0])
        random.shuffle(index)
        train_index = index[0: int((1-rat) * x.shape[0])]
        test_index = index[int((1-rat) * x.shape[0]):-1]
        train_x = x[train_index, :]
        train_y = y[train_index]
        test_x = x[test_index, :]
        test_y = y[test_index]
        return [train_x, train_y, test_x, test_y]         
    def plotRes(pre, real, test_x):  
        s = set(pre)  
        col = ['r','b','g','y','m']  
        fig = plt.figure()  
        pre = np.array(pre)
        ax = fig.add_subplot(111)  
        for i in range(0, len(s)):  
            index1 = pre == i  
            index2 = real == i  
            x1 = test_x[index1, :]  
            x2 = test_x[index2, :]  
            ax.scatter(x1[:,0],x1[:,1],color=col[i],marker='v',linewidths=0.5)  
            ax.scatter(x2[:,0],x2[:,1],color=col[i],marker='.',linewidths=12)  
        plt.title('The prediction of the Gaussian Bayes')  
        plt.legend(('c1:predict','c1:true',  
                    'c2:predict','c2:true',  
                    'c3:predict','c3:true',  
                    'c4:predict','c4:true',  
                    'c5:predict','c5:true'), shadow = True, loc = (0.01, 0.4))  
        plt.show()        
    if __name__ == '__main__':
        [train_x, train_y, test_x, test_y] = samples(2000, 30, 5)
        gb = GaussianBayes()
        gb.train(train_x, train_y)
        
        pred_y = gb.predict(test_x)
        plotRes(pred_y[0], test_y.ravel(), test_x)
    


    预测结果如下:





  • 相关阅读:
    jquery获取select选中的文本值
    Nginx实战入门教程
    【分享】Jenkins自动化部署全套视频教程
    Jenkins自动化部署入门详细教程
    【分享】nginx负载均衡全套视频教程
    IT从业者疫情之下出路何在
    jmeter控制器(四)
    jmeter控制器(三)
    复述记忆法的初步学习总结
    raspberry-gpio-python(树莓派GPIO与Python编程)
  • 原文地址:https://www.cnblogs.com/james1207/p/3258257.html
Copyright © 2020-2023  润新知