• Brackets_区间DP


    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6217   Accepted: 3331

    Description

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6

    定义dp [ i ] [ j ] 为串中第 i 个到第 j 个括号的最大匹配数目

    那么 假如第 i 个和第 j 个是一对匹配的括号那么dp [ i ] [ j ] = dp [ i+1 ] [ j-1 ] + 2 ;

    那么我们只需要从小到大枚举所有 i 和 j 中间的括号数目,然后满足匹配就用上面式子dp,然后每次更新dp [ i ] [ j ]为最大值即可。

    更新最大值的方法是枚举 i 和 j 的中间值,然后让 dp[ i ] [ j ] = max ( dp [ i ] [ j ] , dp [ i ] [ f ] + dp [ f+1 ] [ j ] ) ;

    #include<iostream>
    #include<stdio.h>
    #include<string>
    #include<string.h>
    using namespace std;
    const int N=120;
    int dp[N][N];
    int main()
    {
        string s;
        while(cin>>s)
        {
            if(s=="end") break;
            memset(dp,0,sizeof(dp));
            for(int i=1;i<s.size();i++)
            {
    
                for(int j=0,k=i;k<s.size();j++,k++)
                {
                    if(s[j]=='('&&s[k]==')'||s[j]=='['&&s[k]==']')
                        dp[j][k]=dp[j+1][k-1]+2;
                    for(int f=j;f<k;f++)
                        dp[j][k]=max(dp[j][k],dp[j][f]+dp[f+1][k]);
                }
            }
            cout<<dp[0][s.size()-1]<<endl;
        }
        return 0;
    }
  • 相关阅读:
    [Cogs727] [网络流24题#2] 太空飞行计划 [网络流,最小割]
    [Cogs14] [网络流24题#1] 飞行员分配方案 [网络流,最大流,二分图匹配]
    [Poj2112][USACO2003 US OPEN] Optimal Milking [网络流,最大流][Dinic+当前弧优化]
    基本高精度模板
    Dinic模板
    [poj1698]Alice's Chance[网络流]
    [cf 599D] Spongebob and Squares
    [cf 599C] Day at the Beach
    [BZOJ1004]Cards
    [BZOJ1007]水平可见直线
  • 原文地址:https://www.cnblogs.com/iwantstrong/p/5746293.html
Copyright © 2020-2023  润新知