• Farthest Nodes in a Tree (求树的直径)


    题目链接,密码:hpu

    Description

    Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.

    Input

    Input starts with an integer T (≤ 10), denoting the number of test cases.

    Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000) denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.

    Output

    For each case, print the case number and the maximum distance.

    Sample Input

    2

    4

    0 1 20

    1 2 30

    2 3 50

    5

    0 2 20

    2 1 10

    0 3 29

    0 4 50

    Sample Output

    Case 1: 100

    Case 2: 80

     1 #include<cstdio>
     2 #include<string.h>
     3 #include<algorithm>
     4 #define M 30010
     5 #include<queue>
     6 using namespace std;
     7 int a,b,c,head[M],ans,flag[M],sum[M],node,num,i,n;
     8 /*  head表示每个节点的头“指针”
     9     num表示总边数
    10     ans记录最后的结果
    11     flag[]标记访问过的节点
    12     sum[]表示以该节点结尾的最长路
    13     */ 
    14  
    15 struct stu
    16 {
    17     int from,to,val,next;
    18 }st[M*2];
    19 void add_edge(int u,int v,int w)
    20 {
    21     st[num].from=u;
    22     st[num].to=v;
    23     st[num].val=w;
    24     st[num].next=head[u];
    25     head[u]=num++;
    26 }
    27 void bfs(int fir)
    28 {
    29     int u;
    30     queue<int> que;
    31     memset(flag,0,sizeof(flag));
    32     memset(sum,0,sizeof(sum));
    33     flag[fir]=1;
    34     que.push(fir);
    35     ans=0;
    36     while(!que.empty())
    37     {
    38         u=que.front();
    39         que.pop();
    40         for(i = head[u] ; i != -1 ; i = st[i].next)
    41         {
    42             if(!flag[st[i].to] && sum[st[i].to] < sum[u] + st[i].val)
    43             {
    44                 sum[st[i].to]=sum[u]+st[i].val;
    45                 flag[st[i].to]=1;
    46                 if(ans < sum[st[i].to])
    47                 {
    48                     ans=sum[st[i].to];
    49                     node=st[i].to;            //记录以fir为起点的最长路的端点 
    50                 }
    51                 que.push(st[i].to);
    52             }
    53         }
    54             
    55     }
    56 }
    57 int main()
    58 {
    59     int k=0;
    60     int t;
    61     scanf("%d",&t);
    62     while(t--)
    63     {
    64         num=0;
    65         memset(head,-1,sizeof(head));
    66         scanf("%d",&n);
    67         for(i = 1 ; i < n ; i++)
    68         {
    69             scanf("%d %d %d",&a,&b,&c);
    70             add_edge(a,b,c);
    71             add_edge(b,a,c);
    72         }
    73         bfs(1);
    74         bfs(node);
    75         printf("Case %d: %d
    ",++k,ans);
    76     }
    77 }
    ——将来的你会感谢现在努力的自己。
  • 相关阅读:
    c# 进制
    java生成验证码
    java基础练习题
    java九九乘法表
    java list集合练习
    深入理解Java的接口和抽象类
    java 接口 练习
    java泛型详解
    Java 继承 小练习
    Java单例模式深入详解
  • 原文地址:https://www.cnblogs.com/yexiaozi/p/5729709.html
Copyright © 2020-2023  润新知