• 【51nod】2564 格子染色


    【51nod】2564 格子染色

    这道题原来是网络流……

    感觉我网络流水平不行……

    这种只有两种选择的可以源点向该点连一条容量为b的边,该点向汇点连一条容量为w的边,如果割掉了b证明选w,如果割掉了w证明选b

    那么(p)的限制怎么加呢,新建一个点(i'),然后(i)(i')流一条容量为(p)的边

    (i')再向所有不合法的(j)连一条容量为正无穷的边,这样如果(i)选了(b)(j)选了(w),会有水流从(i ightarrow i' ightarrow j)

    由于(n^2)的边太多了,我们用可持久化线段树优化建图可以改成(O(n log n))

    最后的答案是每个点黑白价值的和减去最大流

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define ba 47
    #define MAXN 200005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    struct node {
        int to,next,cap;
    }E[MAXN * 10];
    int head[MAXN],sumE = 1;
    int N,S,T;
    int dis[MAXN],Ncnt,cur[MAXN];
    int a[5005],b[5005],w[5005],l[5005],r[5005],p[5005];
    int val[5005],tot;
    queue<int> Q;
    void add(int u,int v,int c) {
        E[++sumE].to = v;
        E[sumE].cap = c;
        E[sumE].next = head[u];
        head[u] = sumE;
    }
    void addtwo(int u,int v,int c) {
        add(u,v,c);add(v,u,0);
    }
    bool BFS() {
        memset(dis,0,sizeof(dis));
        while(!Q.empty()) Q.pop();
        dis[S] = 1;
        Q.push(S);
        while(!Q.empty()) {
    	int u = Q.front();
    	Q.pop();
    	for(int i = head[u] ; i ; i = E[i].next) {
    	    int v = E[i].to;
    	    if(!dis[v] && E[i].cap > 0) {
    		dis[v] = dis[u] + 1;
    		if(v == T) return true;
    		Q.push(v);
    	    }
    	}
        }
        return false;
    }
    int dfs(int u,int aug) {
        if(u == T) return aug;
        for(int &i = cur[u] ; i ; i = E[i].next) {
    	int v = E[i].to;
    	if(E[i].cap && dis[v] == dis[u] + 1) {
    	    int t = dfs(v,min(aug,E[i].cap));
    	    if(t) {
    		E[i].cap -= t;
    		E[i ^ 1].cap += t;
    		return t;
    	    }
    	}
        }
        return 0;
    }
    int Dinic() {
        int res = 0;
        while(BFS()) {
    	for(int i = 1 ; i <= Ncnt ; ++i) cur[i] = head[i];
    	while(int d = dfs(S,0x7fffffff)) res += d;
        }
        return res;
    }
    int lc[MAXN],rc[MAXN],rt[5005],nw;
    void Insert(int x,int &y,int l,int r,int pos,int v) {
        y = ++Ncnt;
        addtwo(y,x,2e9);
        lc[y] = lc[x];rc[y] = rc[x];
        if(l == r) {addtwo(y,v,2e9);return;}
        int mid = (l + r) >> 1;
        if(pos <= mid) {
    	Insert(lc[x],lc[y],l,mid,pos,v);
    	addtwo(y,lc[y],2e9);
        }
        else {
    	Insert(rc[x],rc[y],mid + 1,r,pos,v);
    	addtwo(y,rc[y],2e9);
        }
    }
    void addE(int y,int l,int r,int ql,int qr) {
        if(!y) return;
        if(l == ql && qr == r) {addtwo(nw,y,2e9);return;}
        int mid = (l + r) >> 1;
        if(qr <= mid) addE(lc[y],l,mid,ql,qr);
        else if(ql > mid) addE(rc[y],mid + 1,r,ql,qr);
        else {addE(lc[y],l,mid,ql,mid);addE(rc[y],mid + 1,r,mid + 1,qr);}
    }
    void Solve() {
        read(N);S = N + 1;T = N + 2;Ncnt = N + 2;
        int res = 0;
        for(int i = 1 ; i <= N ; ++i) {
    	read(a[i]);read(b[i]);read(w[i]);read(l[i]);read(r[i]);read(p[i]);
    	addtwo(S,i,b[i]);addtwo(i,T,w[i]);
    	res += w[i] + b[i];
    	val[++tot] = a[i];
        }
        sort(val + 1,val + tot + 1);
        tot = unique(val + 1,val + tot + 1) - val - 1;
        for(int i = 1 ; i <= N ; ++i) {
    	nw = ++Ncnt;
    	addtwo(i,nw,p[i]);
    	int s = lower_bound(val + 1,val + tot + 1,l[i]) - val;
    	int t = upper_bound(val + 1,val + tot + 1,r[i]) - val - 1;
    	if(s <= t) addE(rt[i - 1],1,tot,s,t);
    	s = lower_bound(val + 1,val + tot + 1,a[i]) - val;
    	Insert(rt[i - 1],rt[i],1,tot,s,i);
        }
        res -= Dinic();
        out(res);enter;
    }
    int main(){
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
        return 0;
    }
    
  • 相关阅读:
    算法设计技巧与分析(1)二分搜索的前提——线性搜索
    感谢路过秋天以及他的部门经理
    WCF部署到IIS的一个浅水滩
    在WinForm里嵌入WPF模拟公交运行状态
    基于 WPF + Modern UI 的 公司OA小助手 开发总结
    SQL Server 上关于同一张表里的三级联动
    仿百度输入框智能提示
    初探原生js根据json数据动态创建table
    程序员的热血与梦想
    记第六次面试--功夫不负有心人
  • 原文地址:https://www.cnblogs.com/ivorysi/p/11062441.html
Copyright © 2020-2023  润新知