前文记录
leveldb 学习记录(一) skiplist
leveldb 学习记录(二) Slice
leveldb 学习记录(三) MemTable 与 Immutable Memtable
leveldb 学习记录(四) skiplist补完
KV数据库中 大部分是采用内存存储,如果中途发生意外情况,没有dump到磁盘的记录就可能会丢失,但是如果采用log记录操作便可以按照log记录进行这部分的数据恢复
所以,我们在每次操作kv记录的时候都需要将操作记录到log文件中。
每个日志文件都会切分为32KB的BLOCK,BLOCK来记录那些操作RECORD,但是不保证RECORD长度固定。所以有了以下设计
record := checksum: uint32 // crc32c of type and data[]
length: uint16
type: uint8 // One of FULL, FIRST, MIDDLE, LAST
data: uint8[length]
同时也不保证RECORD不跨BLOCK记录
所以RECORD的类型有 FULL, FIRST, MIDDLE, LAST四种类型
当一个RECORD在一个BLOCK内 那么它的类型是FULL
否则跨BLOCK记录RECORD的时候 记录可以分为FIRST, MIDDLE, LAST
如图
上图可以看到LOG文件由三个BLOCK组成BLOCK1 BLOCK2 BLOCK3
不同的RECORD 分配如下
BLOCK1 RECORDA整个数据都在BLOCK1中,所以他的类型是FULL 。接着是 RECORDB的部分数据 类型为FIRST
BLOCK2 RECORDB的数据, 由于部分数据在BLOCK1和BLOCK3中,所以这部分RECORDB的类型是MIDDLE
BLOCK3 首先是RECORDB的数据,类型是LAST。 紧接着是RECORDC,这部分数据类型为FULL
record分为校验和,长度,类型和数据。
对应的相关LOG 数据结构如下
1 enum RecordType { 2 // Zero is reserved for preallocated files 3 kZeroType = 0, 4 5 kFullType = 1, 6 7 // For fragments 8 kFirstType = 2, 9 kMiddleType = 3, 10 kLastType = 4 11 }; 12 static const int kMaxRecordType = kLastType; 13 14 static const int kBlockSize = 32768; 15 16 // Header is checksum (4 bytes), type (1 byte), length (2 bytes). 17 static const int kHeaderSize = 4 + 1 + 2; 18 19 } 20 }
写日志类Writer:
头文件
1 class Writer { 2 public: 3 // Create a writer that will append data to "*dest". 4 // "*dest" must be initially empty. 5 // "*dest" must remain live while this Writer is in use. 6 explicit Writer(WritableFile* dest); 7 ~Writer(); 8 9 Status AddRecord(const Slice& slice); 10 11 private: 12 WritableFile* dest_; 13 int block_offset_; // Current offset in block 14 15 // crc32c values for all supported record types. These are 16 // pre-computed to reduce the overhead of computing the crc of the 17 // record type stored in the header. 18 uint32_t type_crc_[kMaxRecordType + 1]; 19 20 Status EmitPhysicalRecord(RecordType type, const char* ptr, size_t length); 21 22 // No copying allowed 23 Writer(const Writer&); 24 void operator=(const Writer&); 25 };
除开构造函数,主要来看看AddRecord和EmitPhysicalRecord函数
1 Status Writer::AddRecord(const Slice& slice) { 2 const char* ptr = slice.data(); 3 size_t left = slice.size(); 4 5 // Fragment the record if necessary and emit it. Note that if slice 6 // is empty, we still want to iterate once to emit a single 7 // zero-length record 8 Status s; 9 bool begin = true; 10 do { 11 const int leftover = kBlockSize - block_offset_; //剩余要填充的数据长度 是一个BLOCK的长度减去块内已经填充的长度 12 assert(leftover >= 0); 13 if (leftover < kHeaderSize) { //要填充的长度大于7 则在下一个BLOCK进行记录 (因为checksum 4字节 length2字节 type 1字节,光是记录信息已经需要7个字节) 14 // Switch to a new block 15 if (leftover > 0) { 16 // Fill the trailer (literal below relies on kHeaderSize being 7) 17 assert(kHeaderSize == 7); 18 dest_->Append(Slice("x00x00x00x00x00x00", leftover)); 19 } 20 block_offset_ = 0; 21 } 22 23 // Invariant: we never leave < kHeaderSize bytes in a block. 24 assert(kBlockSize - block_offset_ - kHeaderSize >= 0); 25 26 const size_t avail = kBlockSize - block_offset_ - kHeaderSize; 27 const size_t fragment_length = (left < avail) ? left : avail; //根据能否在本BLOCK填充完毕 选择填充长度为left 或者 avail 28 29 RecordType type; 30 const bool end = (left == fragment_length); 31 if (begin && end) { //beg end在用一个BLOCK里 record的type肯定是FULL 32 type = kFullType; 33 } else if (begin) { //本BLOCK只有beg 那么record的type 就是FIRST 34 type = kFirstType; 35 } else if (end) { //本BLOCK只有end 那么record的TYPE就是last 36 type = kLastType; 37 } else { 38 type = kMiddleType; //本BLOCK 没有beg end 那么record填充了整个BLOCK type是MIDDLE 39 } 40 41 s = EmitPhysicalRecord(type, ptr, fragment_length); //提交到log文件记录 42 ptr += fragment_length; 43 left -= fragment_length; 44 begin = false; 45 } while (s.ok() && left > 0); 46 return s; 47 } 48 49 Status Writer::EmitPhysicalRecord(RecordType t, const char* ptr, size_t n) { 50 assert(n <= 0xffff); // Must fit in two bytes 51 assert(block_offset_ + kHeaderSize + n <= kBlockSize); 52 53 // Format the header 54 char buf[kHeaderSize]; 55 buf[4] = static_cast<char>(n & 0xff); //长度低8位 56 buf[5] = static_cast<char>(n >> 8); //长度高8位 57 buf[6] = static_cast<char>(t); //type 58 59 // Compute the crc of the record type and the payload. 60 uint32_t crc = crc32c::Extend(type_crc_[t], ptr, n); //校验和 61 crc = crc32c::Mask(crc); // Adjust for storage 62 EncodeFixed32(buf, crc); 63 64 // Write the header and the payload 65 Status s = dest_->Append(Slice(buf, kHeaderSize)); //数据信息写入 66 if (s.ok()) { 67 s = dest_->Append(Slice(ptr, n)); //数据写入 68 if (s.ok()) { 69 s = dest_->Flush(); 70 } 71 } 72 block_offset_ += kHeaderSize + n; 73 return s; 74 }
//========================================================
读日志类Reader:
日志读取代码中还有一个Reporter 类用于报告错误
1 class Reader { 2 public: 3 // Interface for reporting errors. 4 class Reporter { 5 public: 6 virtual ~Reporter(); 7 8 // Some corruption was detected. "size" is the approximate number 9 // of bytes dropped due to the corruption. 10 virtual void Corruption(size_t bytes, const Status& status) = 0; 11 }; 12 13 // Create a reader that will return log records from "*file". 14 // "*file" must remain live while this Reader is in use. 15 // 16 // If "reporter" is non-NULL, it is notified whenever some data is 17 // dropped due to a detected corruption. "*reporter" must remain 18 // live while this Reader is in use. 19 // 20 // If "checksum" is true, verify checksums if available. 21 // 22 // The Reader will start reading at the first record located at physical 23 // position >= initial_offset within the file. 24 Reader(SequentialFile* file, Reporter* reporter, bool checksum, 25 uint64_t initial_offset); 26 27 ~Reader(); 28 29 // Read the next record into *record. Returns true if read 30 // successfully, false if we hit end of the input. May use 31 // "*scratch" as temporary storage. The contents filled in *record 32 // will only be valid until the next mutating operation on this 33 // reader or the next mutation to *scratch. 34 bool ReadRecord(Slice* record, std::string* scratch); 35 36 // Returns the physical offset of the last record returned by ReadRecord. 37 // 38 // Undefined before the first call to ReadRecord. 39 uint64_t LastRecordOffset(); 40 41 private: 42 SequentialFile* const file_; 43 Reporter* const reporter_; 44 bool const checksum_; 45 char* const backing_store_; 46 Slice buffer_; 47 bool eof_; // Last Read() indicated EOF by returning < kBlockSize 48 49 // Offset of the last record returned by ReadRecord. 50 uint64_t last_record_offset_; 51 // Offset of the first location past the end of buffer_. 52 uint64_t end_of_buffer_offset_; 53 54 // Offset at which to start looking for the first record to return 55 uint64_t const initial_offset_; 56 57 // Extend record types with the following special values 58 enum { 59 kEof = kMaxRecordType + 1, 60 // Returned whenever we find an invalid physical record. 61 // Currently there are three situations in which this happens: 62 // * The record has an invalid CRC (ReadPhysicalRecord reports a drop) 63 // * The record is a 0-length record (No drop is reported) 64 // * The record is below constructor's initial_offset (No drop is reported) 65 kBadRecord = kMaxRecordType + 2 66 }; 67 68 // Skips all blocks that are completely before "initial_offset_". 69 // 70 // Returns true on success. Handles reporting. 71 bool SkipToInitialBlock(); 72 73 // Return type, or one of the preceding special values 74 unsigned int ReadPhysicalRecord(Slice* result); 75 76 // Reports dropped bytes to the reporter. 77 // buffer_ must be updated to remove the dropped bytes prior to invocation. 78 void ReportCorruption(size_t bytes, const char* reason); 79 void ReportDrop(size_t bytes, const Status& reason); 80 81 // No copying allowed 82 Reader(const Reader&); 83 void operator=(const Reader&); 84 };
关键函数是bool Reader::ReadRecord(Slice* record, std::string* scratch)
我的理解中 只要除开完全被 initial_offset_长度覆盖的BLOCK ,
剩下的BLOCK依次读取记录,根据type是FULL MIDDLE FIRST LAST 决定是否继续读取即可
但是源码中的例外情形太多,看的不是太明白,这个留待实际操作在深入研究吧
bool Reader::ReadRecord(Slice* record, std::string* scratch) { if (last_record_offset_ < initial_offset_) { //实际上整个工程中initial_offset_一直为0 , if (!SkipToInitialBlock()) { //block_start_location圆整为包含initial_offset_的BLOCK的偏移 return false; } } scratch->clear(); record->clear(); bool in_fragmented_record = false; // Record offset of the logical record that we're reading // 0 is a dummy value to make compilers happy uint64_t prospective_record_offset = 0; Slice fragment; while (true) { uint64_t physical_record_offset = end_of_buffer_offset_ - buffer_.size(); const unsigned int record_type = ReadPhysicalRecord(&fragment); switch (record_type) { case kFullType: //一次性读取FULL类型的record 直接返回成功 if (in_fragmented_record) { // Handle bug in earlier versions of log::Writer where // it could emit an empty kFirstType record at the tail end // of a block followed by a kFullType or kFirstType record // at the beginning of the next block. if (scratch->empty()) { in_fragmented_record = false; } else { ReportCorruption(scratch->size(), "partial record without end(1)"); } } prospective_record_offset = physical_record_offset; scratch->clear(); *record = fragment; last_record_offset_ = prospective_record_offset; return true; case kFirstType: //读取到FIRST类型的record string.assign 然后继续 if (in_fragmented_record) { // Handle bug in earlier versions of log::Writer where // it could emit an empty kFirstType record at the tail end // of a block followed by a kFullType or kFirstType record // at the beginning of the next block. if (scratch->empty()) { in_fragmented_record = false; } else { ReportCorruption(scratch->size(), "partial record without end(2)"); } } prospective_record_offset = physical_record_offset; scratch->assign(fragment.data(), fragment.size()); in_fragmented_record = true; break; case kMiddleType: //读取到MIDDLE类型的record string.append 然后继续 if (!in_fragmented_record) { ReportCorruption(fragment.size(), "missing start of fragmented record(1)"); } else { scratch->append(fragment.data(), fragment.size()); } break; case kLastType: //读取到LAST 类型record string.append if (!in_fragmented_record) { ReportCorruption(fragment.size(), "missing start of fragmented record(2)"); } else { scratch->append(fragment.data(), fragment.size()); *record = Slice(*scratch); last_record_offset_ = prospective_record_offset; return true; } break; case kEof: if (in_fragmented_record) { ReportCorruption(scratch->size(), "partial record without end(3)"); scratch->clear(); } return false; case kBadRecord: if (in_fragmented_record) { ReportCorruption(scratch->size(), "error in middle of record"); in_fragmented_record = false; scratch->clear(); } break; default: { char buf[40]; snprintf(buf, sizeof(buf), "unknown record type %u", record_type); ReportCorruption( (fragment.size() + (in_fragmented_record ? scratch->size() : 0)), buf); in_fragmented_record = false; scratch->clear(); break; } } } return false; }
参考:
https://blog.csdn.net/tankles/article/details/7663873