• Best Time to Buy and Sell Stock III 解答


    Question

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most two transactions.

    Note:
    You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

    Solution

    This problem can be solved by "divide and conquer". We can use left[i] array to track maximum profit for transactions before i (including i), and right[i + 1] to track maximum profit for transcations after i.

    Prices: 1 4 5 7 6 3 2 9
    left = [0, 3, 4, 6, 6, 6, 6, 8]
    right= [8, 7, 7, 7, 7, 7, 7, 0]

     Time complexity O(n), space cost O(n).

     1 public class Solution {
     2     public int maxProfit(int[] prices) {
     3         if (prices == null || prices.length < 2)
     4             return 0;
     5         int length = prices.length, min = prices[0], max = prices[length - 1], tmpProfit = 0;
     6         int[] leftProfits = new int[length];
     7         leftProfits[0] = 0;
     8         int[] rightProfits = new int[length];
     9         rightProfits[length - 1] = 0;
    10         // Calculat left side profits
    11         for (int i = 1; i < length; i++) {
    12             if (prices[i] > min)
    13                 tmpProfit = Math.max(tmpProfit, prices[i] - min);
    14             else
    15                 min = prices[i];
    16             leftProfits[i] = tmpProfit;
    17         }
    18         // Calculate right side profits
    19         tmpProfit = 0;
    20         for (int j = length - 2; j >= 0; j--) {
    21             if (prices[j] < max)
    22                 tmpProfit = Math.max(tmpProfit, max - prices[j]);
    23             else
    24                 max = prices[j];
    25             rightProfits[j] = tmpProfit;
    26         }
    27         // Sum up
    28         int result = Integer.MIN_VALUE;
    29         for (int i = 0; i < length - 1; i++)
    30             result = Math.max(result, leftProfits[i] + rightProfits[i + 1]);
    31         result = Math.max(result, leftProfits[length - 1]);
    32         return result;
    33     }
    34 }
  • 相关阅读:
    CentOS 网络配置
    BUUCTF-PWN爬坑-04-pwn1_sctf_2016
    BUUCTF-PWN爬坑-03-warmup_csaw_2016
    BUUCTF-PWN爬坑-02-rip
    此博客早八百年已停止维护
    重&长剖
    FHQ Treap
    NOIP2020游记
    CSP2020 游记
    线段树套平衡树
  • 原文地址:https://www.cnblogs.com/ireneyanglan/p/4825130.html
Copyright © 2020-2023  润新知