• 基于SpringDataRedis实现高性能的集群限流组件


    特性:

    1.预申请资源, 减少对redis的请求次数, 提升性能

    2.预判失败, 防止在限流资源不足时高频访问redis, 提升性能

    3.限流的最小时间窗口为1s

    基础依赖

     <dependency>
           <groupId>org.springframework.boot</groupId>
           <artifactId>spring-boot-starter-data-redis</artifactId>
           <version>2.x.x.RELEASE</version>
     </dependency>

    工具类源码

    RedisLimits

    package com.idanchuang.component.redis.util;
    
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    import org.springframework.data.redis.core.script.DefaultRedisScript;
    
    import java.util.ArrayList;
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    import java.util.concurrent.ConcurrentHashMap;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicInteger;
    
    /**
     * 限流工具类
     *
     * @author yjy
     * @date 2020/9/3 18:21
     **/
    public class RedisLimits {
    
        private static final Logger log = LoggerFactory.getLogger(RedisLimits.class);
    
        /** 默认预配额因子, 默认预配额为 总配额的 1%  (此值不能大于0.1) */
        private static double defaultFactor = 0.01D;
    
        /** 申请失败缓冲时间(当从redis申请配额失败后, 在一段时间内不再申请, 直接失败), 单位: 毫秒 */
        private static long bufferTime = 10L;
    
        /** redis key前缀 */
        private static final String REDIS_KEY_PREFIX = "limit:";
    
        /** 资源对应的预配额因子, 不设置则取 默认预配额因子 */
        private static final Map<String, Double> FACTOR_MAP = new HashMap<>();
    
        /** 本地预配额 */
        private static final Map<String, AtomicInteger> PRE_REQUIRE = new ConcurrentHashMap<>();
    
        /** 最近申请失败的记录, 资源名 -> 失败时间 */
        private static final Map<String, Long> LAST_FAILED = new ConcurrentHashMap<>();
    
        /**
         * 设置默认的预配额因子
         * @param defaultFactor 因子, 不能大于 0.1
         */
        public static void setDefaultFactor(double defaultFactor) {
            RedisLimits.defaultFactor = Math.min(defaultFactor, 0.1D);
        }
    
        /**
         * 设置指定资源的预配额因子
         * @param name 资源名
         * @param factor 因子, 不能大于 0.1
         */
        public static void setFactor(String name, double factor) {
            FACTOR_MAP.put(name, Math.min(factor, 0.1D));
        }
    
        /**
         * 申请失败缓冲时间
         * @param bufferTime 缓冲时间
         */
        public static void setBufferTime(long bufferTime) {
            RedisLimits.bufferTime = Math.max(bufferTime, 1L);
        }
    
        public static boolean require(String name, int limit) {
            return require(name, limit, 1, 1, TimeUnit.SECONDS);
        }
    
        public static boolean require(String name, int limit, int require) {
            return require(name, limit, require, 1, TimeUnit.SECONDS);
        }
    
        public static boolean require(String name, int limit, int timeWindow, TimeUnit timeUnit) {
            return require(name, limit, 1, timeWindow, timeUnit);
        }
    
        /**
         * 限流访问申请
         * @param name 限流资源名
         * @param limit 限流额度
         * @param require 申请额度, 默认: 1
         * @param timeWindow 时间窗口值, 默认: 1
         * @param timeUnit 时间窗口单位, 默认: 秒
         * @return 是否通过
         */
        public static boolean require(String name, int limit, int require, int timeWindow, TimeUnit timeUnit) {
            if (require < 1) {
                return true;
            }
            if (require > limit) {
                return false;
            }
            // 预判失败
            if (predictFailed(name)) {
                log.debug("require predictFailed, name: {}", name);
                return false;
            }
            // 尝试申请本地预配额
            if (requireLocal(name, require)) {
                log.debug("require requireLocal success, name: {}, require: {}", name, require);
                return true;
            }
            try {
                // 假如时间窗口配置大于1s, 则进行分割
                long secondWindow = timeUnit.toSeconds(timeWindow);
                secondWindow = Math.max(secondWindow, 1);
                // 计算每秒限流数
                int secondLimit = (int) (limit / secondWindow);
                secondLimit = Math.max(secondLimit, 1);
                // 计算每秒预配额
                int preRequire = (int)(limit * FACTOR_MAP.getOrDefault(name, defaultFactor));
                int secondPreRequire = (int) (preRequire / secondWindow);
                // 如果申请额度小于每秒预配额, 那么进行预申请
                if (secondPreRequire > 0 && secondPreRequire > require) {
                    // 申请预配额
                    if (requireRedis(name, secondLimit, secondPreRequire)) {
                        // 更新本地预配额
                        updateLocal(name, secondPreRequire - require);
                        return true;
                    }
                }
                // 直接从redis申请配额
                return requireRedis(name, secondLimit, require);
            } catch (Exception e) {
                log.error("require error", e);
                // 降级通过
                return true;
            }
        }
    
        /**
         * 在本地申请配额
         * @param name 资源名
         * @param require 申请配额数量
         * @return 是否申请成功
         */
        private static boolean requireLocal(String name, int require) {
            AtomicInteger preRequire = getLocal(name);
            if (preRequire.get() < require) {
                return false;
            }
            updateLocal(name, require * -1);
            return true;
        }
    
        /**
         * 更新本地配额
         * @param name 资源名
         * @param updateRequire 更新数量
         * @return 更新后的值
         */
        private static AtomicInteger updateLocal(String name, int updateRequire) {
            AtomicInteger local = getLocal(name);
            local.addAndGet(updateRequire);
            return local;
        }
    
        /**
         * 初始化本地配额
         * @param name 资源名
         * @return 本地配额
         */
        private static AtomicInteger getLocal(String name) {
            if (!PRE_REQUIRE.containsKey(name)) {
                PRE_REQUIRE.put(name, new AtomicInteger(0));
            }
            return PRE_REQUIRE.get(name);
        }
    
        /**
         * 从Redis申请配额
         * @param name 限流资源名
         * @param limit 限流额度
         * @param require 申请额度
         * @return 是否成功
         */
        private static boolean requireRedis(String name, int limit, int require) {
            log.debug("requireRedis name: {}, limit: {}, require: {}, timeWindow: {}, timeUnit: {}",
                    name, limit, require, 1, TimeUnit.SECONDS);
            // 申请资源
            if (doRequire(name, limit, require)) {
                // 清除失败记录
                clearLastFailed(name);
                return true;
            }
            // 记录失败时间
            setLastFailed(name);
            return false;
        }
    
        private static boolean doRequire(String name, int limit, int require) {
            String key = getKey(name);
            long millisTtl = 1000;
            String script = "local apply,limit,ttl=ARGV[1],ARGV[2],ARGV[3] ";
            script += "if redis.call('EXISTS', KEYS[1])==1 " +
                        "then local curValue = redis.call('GET', KEYS[1]) " +
                        "local targetValue = curValue + apply " +
                        "if targetValue <= tonumber(limit) " +
                            "then redis.call('INCRBY', KEYS[1], apply) " +
                            "return true " +
                        "else " +
                            "return false " +
                        "end " +
                    "else " +
                        "redis.call('SET', KEYS[1], apply) " +
                        "redis.call('PEXPIRE', KEYS[1], ttl) " +
                        "return true " +
                    "end";
            DefaultRedisScript<Boolean> redisScript = new DefaultRedisScript<>();
            redisScript.setResultType(Boolean.class);
            redisScript.setScriptText(script);
            List<String> keys = new ArrayList<>();
            keys.add(key);
            return RedisUtil.getInstance().execute(redisScript, keys,
                    String.valueOf(require), String.valueOf(limit), String.valueOf(millisTtl));
        }
    
        /**
         * 预判本次申请会失败
         * @param name 资源名
         * @return 是否会失败
         */
        private static boolean predictFailed(String name) {
            long last = LAST_FAILED.getOrDefault(name, 0L);
            return System.currentTimeMillis() < last + bufferTime;
        }
    
        /**
         * 更新失败时间
         * @param name 资源名
         */
        private static void setLastFailed(String name) {
            LAST_FAILED.put(name, System.currentTimeMillis());
        }
    
        /**
         * 清除失败时间
         * @param name 资源名
         */
        private static void clearLastFailed(String name) {
            LAST_FAILED.remove(name);
        }
    
        /**
         * @param name 资源名
         * @return redis中的资源key
         */
        private static String getKey(String name) {
            return REDIS_KEY_PREFIX + name;
        }
    
    }

    使用方式

    // 申请1个资源 (限制1s资源总数为10)
    if (RedisLimits.require("yjy", 10, 1, 1, TimeUnit.SECONDS)) {
        // 申请成功, 执行业务逻辑...
    }

    使用起来不够优雅? 想用注解? 请继续看

    RedisLimit

    package com.idanchuang.component.redis.annotation;
    
    import java.lang.annotation.*;
    
    /**
     * @author yjy
     * @date 2020/9/3 18:05
     **/
    @Target(ElementType.METHOD)
    @Retention(RetentionPolicy.RUNTIME)
    @Inherited
    public @interface RedisLimit {
    
        /** 限流qps */
        int value();
    
        /** 资源名称, 默认取 类名:方法名 */
        String name() default "";
    
        /** 时间窗口, 单位: 秒 */
        int timeWindow() default 1;
    
        /** 资源名称追加业务方法参数的值, 如: #appId */
        String[] appendKeys() default {};
    
        /** 预配额因子 */
        double factor() default 0.01D;
    
        /** 限流时返回的异常信息 */
        String errMessage() default "";
    
    }
    @RedisLimit

    RedisLimitAspect

    package com.idanchuang.component.redis.aspect;
    
    import com.idanchuang.component.redis.annotation.RedisLimit;
    import com.idanchuang.component.redis.helper.BusinessKeyHelper;
    import com.idanchuang.component.redis.util.RedisLimits;
    import org.aspectj.lang.ProceedingJoinPoint;
    import org.aspectj.lang.annotation.Around;
    import org.aspectj.lang.annotation.Aspect;
    import org.aspectj.lang.annotation.Pointcut;
    import org.aspectj.lang.reflect.MethodSignature;
    import org.springframework.stereotype.Component;
    import org.springframework.util.StringUtils;
    
    import java.lang.reflect.Method;
    import java.util.concurrent.TimeUnit;
    
    /**
     * Aspect for methods with {@link RedisLimit} annotation.
     *
     * @author yjy
     */
    @Aspect
    @Component
    public class RedisLimitAspect {
    
        @Pointcut("@annotation(com.idanchuang.component.redis.annotation.RedisLimit)")
        public void redisLimitAnnotationPointcut() {
        }
    
        @Around("redisLimitAnnotationPointcut()")
        public Object invokeWithRedisLimit(ProceedingJoinPoint pjp) throws Throwable {
            Method originMethod = resolveMethod(pjp);
            RedisLimit annotation = originMethod.getAnnotation(RedisLimit.class);
            if (annotation == null) {
                // Should not go through here.
                throw new IllegalStateException("Wrong state for RedisLimit annotation");
            }
            String sourceName = getName(annotation, pjp);
            // 设置预配额因子
            RedisLimits.setFactor(sourceName, annotation.factor());
            if (RedisLimits.require(sourceName, annotation.value(), annotation.timeWindow(), TimeUnit.SECONDS)) {
                return pjp.proceed();
            }
            throw new RuntimeException(annotation.errMessage());
        }
    
        /**
         * 获取资源名
         * @param annotation 注解信息
         * @param pjp 调用信息
         * @return 资源名
         */
        private String getName(RedisLimit annotation, ProceedingJoinPoint pjp) {
            String sourceName = annotation.name();
            // if 未指定sourceName, 则默认取 类名:方法名
            if (StringUtils.isEmpty(sourceName)) {
                Method originMethod = resolveMethod(pjp);
                sourceName = originMethod.getDeclaringClass().getSimpleName() + ":" + originMethod.getName();
            }
            sourceName += BusinessKeyHelper.getKeyName(pjp, annotation.appendKeys());
            return sourceName;
        }
    
        private Method resolveMethod(ProceedingJoinPoint joinPoint) {
            MethodSignature signature = (MethodSignature) joinPoint.getSignature();
            Class<?> targetClass = joinPoint.getTarget().getClass();
    
            Method method = getDeclaredMethodFor(targetClass, signature.getName(),
                    signature.getMethod().getParameterTypes());
            if (method == null) {
                throw new IllegalStateException("Cannot resolve target method: " + signature.getMethod().getName());
            }
            return method;
        }
    
        /**
         * Get declared method with provided name and parameterTypes in given class and its super classes.
         * All parameters should be valid.
         *
         * @param clazz          class where the method is located
         * @param name           method name
         * @param parameterTypes method parameter type list
         * @return resolved method, null if not found
         */
        private Method getDeclaredMethodFor(Class<?> clazz, String name, Class<?>... parameterTypes) {
            try {
                return clazz.getDeclaredMethod(name, parameterTypes);
            } catch (NoSuchMethodException e) {
                Class<?> superClass = clazz.getSuperclass();
                if (superClass != null) {
                    return getDeclaredMethodFor(superClass, name, parameterTypes);
                }
            }
            return null;
        }
    
    }
    RedisLimitAspect.java

    BusinessKeyHelper

    package com.idanchuang.component.redis.helper;
    
    import org.aspectj.lang.ProceedingJoinPoint;
    import org.aspectj.lang.reflect.MethodSignature;
    import org.springframework.context.expression.MethodBasedEvaluationContext;
    import org.springframework.core.DefaultParameterNameDiscoverer;
    import org.springframework.core.ParameterNameDiscoverer;
    import org.springframework.expression.EvaluationContext;
    import org.springframework.expression.ExpressionParser;
    import org.springframework.expression.spel.standard.SpelExpressionParser;
    import org.springframework.util.StringUtils;
    
    import java.lang.reflect.Method;
    import java.util.ArrayList;
    import java.util.List;
    
    /**
    * 获取用户定义业务key
    * @author sxp
    * @return
    * @date 2020/7/3 10:54
    */
    public class BusinessKeyHelper {
    
        private static ParameterNameDiscoverer nameDiscoverer = new DefaultParameterNameDiscoverer();
    
        private static ExpressionParser parser = new SpelExpressionParser();
    
        public static String getKeyName(ProceedingJoinPoint joinPoint, String[] keys) {
            if (keys == null || keys.length == 0) {
                return "";
            }
            Method method = getMethod(joinPoint);
            List<String> definitionKeys = getSpelDefinitionKey(keys, method, joinPoint.getArgs());
            List<String> keyList = new ArrayList<>(definitionKeys);
            return StringUtils.collectionToDelimitedString(keyList, "", "-", "");
        }
    
        private static Method getMethod(ProceedingJoinPoint joinPoint) {
            MethodSignature signature = (MethodSignature) joinPoint.getSignature();
            Method method = signature.getMethod();
            if (method.getDeclaringClass().isInterface()) {
                try {
                    method = joinPoint.getTarget().getClass().getDeclaredMethod(signature.getName(),
                            method.getParameterTypes());
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
            return method;
        }
    
        private static List<String> getSpelDefinitionKey(String[] definitionKeys, Method method, Object[] parameterValues) {
            List<String> definitionKeyList = new ArrayList<>();
            for (String definitionKey : definitionKeys) {
                if (definitionKey != null && !definitionKey.isEmpty()) {
                    EvaluationContext context = new MethodBasedEvaluationContext(null, method, parameterValues, nameDiscoverer);
                    Object obj = parser.parseExpression(definitionKey).getValue(context);
                    if (obj == null) {
                        definitionKeyList.add("");
                    } else {
                        definitionKeyList.add(obj.toString());
                    }
                }
            }
            return definitionKeyList;
        }
    
    }
    BusinessKeyHelper.java

    添加上面三个类后, 我们就可以使用注解啦, 如下

    /**
     * @author yjy
     * @date 2020/5/8 10:21
     **/
    @Component
    public class BusinessService {
    
        private static AtomicInteger a = new AtomicInteger(0);
    
        @RedisLimit(value = 10, name = "source_name", appendKeys = {"#from"}, timeWindow = 1, factor = 0.01D, errMessage = "惨被限流")
        public void doSomething(String from) {
            System.out.println(from + " 通过: " + a.incrementAndGet());
        }
    }

    好了, 基于Redis实现的集群限流工具就介绍到这里了, 下回见啦, 拜拜~

  • 相关阅读:
    Java精通并发-自旋对于synchronized关键字的底层意义与价值分析以及互斥锁属性详解与Monitor对象特性解说【纯理论】
    线性表的链式存储结构
    Java精通并发-同步方法访问标志与synchronized关键字之间的关系
    Java精通并发-透过字节码理解synchronized关键字
    解决com.fasterxml.jackson.databind.JsonMappingException: No suitable
    mybatis绑定错误-- Invalid bound statement (not found)
    java.sql.SQLException: **** [SQLServer]对象名 "XXXX"无效
    Missing URI template variable 'XXXX' for method parameter of type String
    Unrecognized token 'XXXX': was expecting ('true', 'false' or 'null')
    ajax的data传参的两种方式
  • 原文地址:https://www.cnblogs.com/imyjy/p/15808989.html
Copyright © 2020-2023  润新知