• CF-Approximating a Constant Range


    Description

    When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it?

    You're given a sequence of n data points a1, ..., an. There aren't any big jumps between consecutive data points — for each 1 ≤ i < n, it's guaranteed that |ai + 1 - ai| ≤ 1.

    A range [l, r] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let M be the maximum and m the minimum value of ai for l ≤ i ≤ r; the range [l, r] is almost constant if M - m ≤ 1.

    Find the length of the longest almost constant range.

    Input

    The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of data points.

    The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 100 000).

    Output

    Print a single number — the maximum length of an almost constant range of the given sequence.

    Sample Input

    Input
    5
    1 2 3 3 2
    Output
    4
    Input
    11
    5 4 5 5 6 7 8 8 8 7 6
    Output
    5

    Hint

    In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4.

    In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].


    思路:

    一开始各种想LIS,但是CF再次证明了前两道题目全是想法题(虽然想法并不比算法简单= =~)

    首先是要在一整个数段中找到其中的一个子数段,在它的M-m<=1的情况下使其len最大

    那么这里就涉及到两个思维的关键点:

    (1)不同状态之间的转换:为每个状态设置一个M和m,对于每一个后进入的点判断是否可以继续维持前一状态,如果可以就count++

    (2)要意识到新状态的开始点并不一定是旧状态的结束点:可能有一点使得原来的状态不能够持续下去而结束了,但是并不意味着这一点就是新状态的开始点,在维持旧状态的过程中可能就出现了新状态的开始点,这点主要到了以后只要根据不同的情况去找那个开始点就OK了


    #include <iostream>
    using namespace std;
    
    int m,M,n;
    int num[100007];
    
    bool ok(int t)
    {
        if(m==M) {
            if(t==m)
                return true;
            else if(t == m-1||t == m+1)
                return true;
            else 
                return false;
        }
        else {
            if(t==M||t==m)
                return true;
            else 
                return false;
        }
    }
    
    int main()
    {
        while(cin>>n)
        {
            cin>>num[1];
            m = num[1];
            M = num[1];
            int count = 1;
            int ans = 0;
            for(int i = 2;i <= n;i++)
            {
                cin>>num[i];
                if(ok(num[i]))
                {
                    if(m==M && num[i] == m-1) 
                        m = num[i];
                    else if(m==M && num[i] == m+1)
                        M = num[i];
                    count++;
                }
                else {
                    if(m == M) {
                        M = m = num[i];
                        count = 1;
                    }
                    else {
                        int pos;
                        if(num[i] == num[i-1]+1) {
                            M = num[i];
                            m = num[i-1];
                            for(int j = i-1;j >= 1;j--)
                            {
                                if(num[j] != num[i-1])
                                    break;
                                pos = j;
                            }
                            count = i-pos+1;//此时的count应该=当前的坐标-s段开始的坐标 
                        }
                        else if(num[i] == num[i-1]-1) {
                            M = num[i-1];
                            m = num[i];
                            for(int j = i-1;j >= 1;j--)
                            {
                                if(num[j] != num[i-1])
                                    break;
                                pos = j;
                            }
                            count = i-pos+1;//同上 
                        }
                        else {
                            M = m = num[i];
                            count = 1;
                        }
                    }
                }
                ans = max(ans,count);
            }    
            cout<<ans<<endl;
        }
        return 0;
    }
  • 相关阅读:
    Android 4.0新增Space及GridLayout初谈
    phpweb文件上传下载
    文件上传下载
    php大文件上传
    word图片上传到服务器
    文件中心支持上传下载
    文件管理系统开源
    ueditor word图片上传
    web超大文件上传
    java大视频上传实现
  • 原文地址:https://www.cnblogs.com/immortal-worm/p/5009475.html
Copyright © 2020-2023  润新知