• php下贝叶斯算法实例


    由于数据是从数据库内读取 故不可能直接照搬 大体思路是利用之前分享的贝叶斯算法实现该机制,在实现过程中发现该算法对于培养的数据要求较高,由于我自己是随意分类,所以结果很差,不过也算是对于该方法的一个实现吧,只要修改了关键词以及分类应该可以得到较好的结果。

    <?php
        include_once('config1.php');
        include_once('Bayes.php');
        $sunKindrow=11;//sunkind列 正式程序改为7
        $result = mysql_query(" SELECT count(1) FROM `test`  ");//获取样本个数
        $row=mysql_fetch_array($result);
        $count = $row['count(1)'];    
        $sunkind=array();//存储各个关键词对应的各个类别的比例
        $keyword=array("编辑","工程");//关键词
        $keyprecent=array();//关键词比例
        //初始化 sunkind
        for($i=0;$i<count($keyword);$i++)
        {
            for($j=0;$j<$sunKindrow;$j++)
            {
                $sunkind[$i][$j]=0;
            }
        }
        //计算keyprecent sunkind
        for($i=0;$i<count($keyword);$i++)
        {
            //echo $keyword[$i];
            $result1 = mysql_query(" SELECT count(1) FROM `test` WHERE `title` LIKE '%" . $keyword[$i] . "%'");
            $row1 = mysql_fetch_array($result1);
            $count1 = $row1['count(1)'];    
            $keyprecent[$i] = $count1/$count;
            $result2 = mysql_query(" SELECT * FROM `test` WHERE `title` LIKE '%" . $keyword[$i] . "%'");
            while($row2 = mysql_fetch_array($result2))
            {
                $sunkind[$i][$row2['kindid']]=$sunkind[$i][$row2['kindid']]+1;
            }
            for($j=0;$j<count($sunkind[$i]);$j++)
            {
                $sunkind[$i][$j]=$sunkind[$i][$j]/$count1;
                //去除小概率数据
                if($sunkind[$i][$j]<0.1)
                $sunkind[$i][$j]=0;
            }
        }
        //以下为显示部分
        $disease_labels = array("编辑", "工程");
    
        // Where patient is assessed as to whether they exhibit symptom 1 and/or symptom 2
        $symptom_labels = array("0","1","2","3","4","5","6","7","8","9","10","11"); 
        $bayes = new Bayes($keyprecent, $sunkind);
        $bayes->getPosterior();
    
        echo "<p>";
        echo "The probability of each disease type given the presence or absence of symptoms is: ";
        echo "</p>";
    
        $bayes->setRowLabels($symptom_labels);    // i.e., evidence
        $bayes->setColumnLabels($disease_labels); // i.e., hypothesis
        $bayes->toHTML();
    
        echo "<br />";
        echo "<p>";
        echo "Here is what a dump of the Bayes object looks: ";
        echo "</p>";
    
        echo "<pre>";
        print_r($bayes);
        echo "</pre>";
    ?>

    以下为所用的Bayes.php代码

    <?php
    
    /**
    * Bayes
    *
    * @author  Paul Meagher <paul@datavore.com> 
    * @license PHP License v3.0     
    *
    * Calculates posterior probabilities for m hypotheses and n evidence  
    * alternatives.  The code was inspired by a procedural TrueBasic version 
    * (Bayes.tru) bundled with Grimstead and Snell's excellent online 
    * textbook "Introduction to Probability". 
    *
    * @see http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
    *
    */
    
    class Bayes {
    
      /**
      * Number of evidence alternatives (i.e., number of rows).
      */
      var $m;
    
      /**
      * Number of hypothesis alternatives (i.e., number of columns).
      */
      var $n;
    
      /**
      * Output labels for evidence alternatives.
      */
      var $row_labels = array();
      
      /**
      * Output labels for hypothesis alternatives.
      */  
      var $column_labels = array();  
    
      /**
      * Vector container for prior probabilities.
      */
      var $priors = array();
    
      /**
      * Matrix container for likelihood of evidence e given hypothesis h.
      */
      var $likelihoods = array();         
    
      /**
      * Matrix container for posterior probabilties.
      */
      var $posterior = array();
    
      /**
      * Vector container for evidence probabilties.
      */
      var $evidence = array();  
      /**
      * Initialize the Bayes algorithm by setting the priors, likelihoods and 
      * dimensions of the likelihood and posterior matrices.
      */
      function Bayes($priors, $likelihoods) {
        $this->priors = $priors;
        $this->likelihoods = $likelihoods;
        $this->m = count($this->likelihoods);  // num rows
        $this->n = count($this->likelihoods[0]); // num cols   
        return true;
      }
      
      /**
      * Output method for setting row labels prior to display.
      */
      function setRowLabels($row_labels) {
        $this->row_labels = $row_labels;
        return true;
      }
    
      /**
      * Output method for setting column labels prior to display.
      */
      function setColumnLabels($column_labels) {
        $this->column_labels = $column_labels;
        return true;
      }
    
      /**
      * Compute the posterior probability matrix given the priors and likelihoods.
      *
      * The first set of loops computes the denominator of the canonical Bayes 
      * equation. The probability appearing in the denominator serves a normalizing 
      * role in the computation - it ensures that posterior probabilities sum to 1.  
      *
      * The second set of loops: 
      *
      *   1. multiplies the prior[$h] by the likelihood[$h][$e]
      *   2. divides the result by the denominator
      *   3. assigns the result to the posterior[$e][$h] probability matrix
      */              
      function getPosterior() {
        // Find probability of evidence e
        for($e=0; $e < $this->n; $e++)
        {
            $this->evidence[$e]=0;
        }
        for($e=0; $e < $this->n; $e++) {
          for ($h=0; $h < $this->m; $h++) {
            $this->evidence[$e] += $this->priors[$h] * $this->likelihoods[$h][$e];
          }
        }
        // Find probability of hypothesis given evidence
        for($e=0; $e < $this->n; $e++) {
          for ($h=0; $h < $this->m; $h++) {     
            $this->posterior[$e][$h] = $this->priors[$h] * $this->likelihoods[$h][$e] / $this->evidence[$e];
          }
        }
        return true;    
      }
      
      /**
      * Output method for displaying posterior probability matrix
      */
      function toHTML($number_format="%01.3f") {
        ?>
        <table border='1' cellpadding='5' cellspacing='0'>
          <tr>
            <td>&nbsp;</td>
            <?php
            for ($h=0; $h < $this->m; $h++) {         
              ?>
              <td align='center'><b><?php echo $this->column_labels[$h] ?></b></td>
              <?php
            }  
            ?>
          </tr>
          <?php    
          for($e=0; $e < $this->n; $e++) {
            ?>
            <tr>
              <td><b><?php echo $this->row_labels[$e] ?></b></td>
              <?php
              for ($h=0; $h < $this->m; $h++) {     
                ?>
                <td align='right'><?php printf($number_format, $this->posterior[$e][$h]) ?></td>
                <?php
              }
              ?>
            </tr>
            <?php
          }       
          ?>  
        </table>
        <?php
      }
    }
    
    ?>
  • 相关阅读:
    R语言做文本挖掘 Part4文本分类
    在VS2005中使用原来的IIS调试Web程序(像VS2003一样)
    “提高一下dotnet程序的效率一”中关于exception的问题
    asp.net Cookies 转码的问题 中文丢失
    静态构造函数
    js在firefox中的问题
    模板引擎的一种实现
    .NET面试题,看看你的水平[转]
    转载 软件架构师应该具备的素质(Enterprise Solution Architects and Leadership)
    用正则表达式提取url中的Querystring参数
  • 原文地址:https://www.cnblogs.com/icysnow/p/3038644.html
Copyright © 2020-2023  润新知