• 利用集群因子优化


    create index END_DT_IDX1 on F_AGT_BUSINESS_CONTRACT_H(end_dt);
    
    SQL> explain plan for  select * from  F_AGT_BUSINESS_CONTRACT_H t where t.end_dt = date '2999-12-31';
    
    Explained.
    
    SQL> select * from table(dbms_xplan.display());
    
    PLAN_TABLE_OUTPUT
    --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    Plan hash value: 3544262987
    
    -----------------------------------------------------------------------------------------------
    | Id  | Operation	  | Name		      | Rows  | Bytes | Cost (%CPU)| Time     |
    -----------------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT  |			      |   238K|   140M| 45269	(1)| 00:09:04 |
    |*  1 |  TABLE ACCESS FULL| F_AGT_BUSINESS_CONTRACT_H |   238K|   140M| 45269	(1)| 00:09:04 |
    -----------------------------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       1 - filter("T"."END_DT"=TO_DATE(' 2999-12-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))
    
    13 rows selected.
    
    为什么没走索引呢?
    
    1.查看数据分布
    
    SQL> select end_dt,count(*) from F_AGT_BUSINESS_CONTRACT_H 
    group by end_dt
    having end_dt = date '2999-12-31';  2    3  
    
    END_DT	     COUNT(*)
    ---------- ----------
    2999-12-31     246369
    
    总条数:
    SQL> select count(*) from F_AGT_BUSINESS_CONTRACT_H;
    
      COUNT(*)
    ----------
       1614953
    
    
    2.查看集群因子:
    SQL> select index_name,clustering_factor from user_indexes where table_name='F_AGT_BUSINESS_CONTRACT_H'
      2  and index_name='END_DT_IDX1';
    
    INDEX_NAME		       CLUSTERING_FACTOR
    ------------------------------ -----------------
    END_DT_IDX1				  557965
    
    
    3.查看表的块数:
    
    SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from F_AGT_BUSINESS_CONTRACT_H a
      2  where a.end_dt = date '2999-12-31';
    
    COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
    ---------------------------------------------------
    					      33459
    
    SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from F_AGT_BUSINESS_CONTRACT_H;
    
    COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
    ---------------------------------------------------
    					      96435
    如果clustering factor 接近block 数,说明表的存储和索引存储排序接近,也就是说表中的记录很有序,这样在做index range scan 的时候能,读取少量的data block 就能得到我们想要的数据,代价比较小。如果clustering factor 接近表记录数,说明表的存储和索引排序差异很大,在做index range scan 的时候,会额外读取多个block,因为表记录分散,代价较高。
    
    4. 重建表:
    CREATE TABLE F_AGT_BUSINESS_CONTRACT_H_1 AS SELECT * FROM F_AGT_BUSINESS_CONTRACT_H ORDER BY end_dt;
    
    SQL> create index END_DT_IDX2 on F_AGT_BUSINESS_CONTRACT_H_1(end_dt);
    
    BEGIN
      DBMS_STATS.GATHER_TABLE_STATS(ownname          => 'DWF',
                                    tabname          => 'F_AGT_BUSINESS_CONTRACT_H_1',
                                    estimate_percent => 30,
                                    method_opt       => 'for all columns size repeat',
                                    no_invalidate    => FALSE,
                                    degree           => 8,
                                    cascade          => TRUE);
    END;
    
    查看此时的集群因子:
    SQL> select index_name,clustering_factor from user_indexes where table_name='F_AGT_BUSINESS_CONTRACT_H_1';
    
    INDEX_NAME		       CLUSTERING_FACTOR
    ------------------------------ -----------------
    END_DT_IDX2				  171023
    
    SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from F_AGT_BUSINESS_CONTRACT_H_1;
    
    COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
    ---------------------------------------------------
    					     161791
    
    此时的集群因子和块数接近;
    
    查看此时需要访问的块数:
    SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from F_AGT_BUSINESS_CONTRACT_H_1;
    
    COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
    ---------------------------------------------------
    					     161791
    
    SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from F_AGT_BUSINESS_CONTRACT_H_1 a
    where a.end_dt>date'2014-03-01'  2  ;
    
    COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
    ---------------------------------------------------
    					      24971
    
    此时集群因子接近了表的块数
    
    SQL> explain plan for select * from  F_AGT_BUSINESS_CONTRACT_H_1 t where t.end_dt = date '2999-12-31';
    
    Explained.
    
    SQL> select * from table(dbms_xplan.display());
    
    PLAN_TABLE_OUTPUT
    --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    Plan hash value: 1303973883
    
    -----------------------------------------------------------------------------------------------------------
    | Id  | Operation		    | Name			  | Rows  | Bytes | Cost (%CPU)| Time	  |
    -----------------------------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT	    |				  |  1478 |   894K|   163   (0)| 00:00:02 |
    |   1 |  TABLE ACCESS BY INDEX ROWID| F_AGT_BUSINESS_CONTRACT_H_1 |  1478 |   894K|   163   (0)| 00:00:02 |
    |*  2 |   INDEX RANGE SCAN	    | END_DT_IDX2		  |  1502 |	  |	6   (0)| 00:00:01 |
    -----------------------------------------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       2 - access("T"."END_DT"=TO_DATE(' 2999-12-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))
    
    14 rows selected.
    

  • 相关阅读:
    2014年终总结
    杭电2014——青年歌手大奖赛_评委会打分
    nyoj---t448(寻找最大数)
    nyoj_t218(Dinner)
    将string转换成char*
    nyoj71--独木舟上的旅行
    基于贪心算法的几类区间覆盖问题
    会场安排问题—NYOJ14
    南阳理工ACM——106背包问题
    南阳理工91——阶乘之和
  • 原文地址:https://www.cnblogs.com/hzcya1995/p/13352359.html
Copyright © 2020-2023  润新知