ZCC loves cards
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 828 Accepted Submission(s): 184
Problem Description
ZCC loves playing cards. He has n magical cards and each has a number on it. He wants to choose k cards and place them around in any order to form a circle. He can choose any several consecutive cards the number of which is m(1<=m<=k) to play a magic. The magic is simple that ZCC can get a number x=a1⊕a2...⊕am, which ai means the number on the ith card he chooses. He can play the magic infinite times, but once he begin to play the magic, he can’t change anything in the card circle including the order.
ZCC has a lucky number L. ZCC want to obtain the number L~R by using one card circle. And if he can get other numbers which aren’t in the range [L,R], it doesn’t matter. Help him to find the maximal R.
ZCC has a lucky number L. ZCC want to obtain the number L~R by using one card circle. And if he can get other numbers which aren’t in the range [L,R], it doesn’t matter. Help him to find the maximal R.
Input
The input contains several test cases.The first line in each case contains three integers n, k and L(k≤n≤20,1≤k≤6,1≤L≤100). The next line contains n numbers means the numbers on the n cards. The ith number a[i] satisfies 1≤a[i]≤100.
You can assume that all the test case generated randomly.
You can assume that all the test case generated randomly.
Output
For each test case, output the maximal number R. And if L can’t be obtained, output 0.
Sample Input
4 3 1
2 3 4 5
Sample Output
7
Hint
⊕ means xor Author
镇海中学
Source
Recommend
搜索
首先找到k个元素后,枚举这k个元素的所有子集,看能不能超过当前得到的最大的R,如果不能,就没有必要在检查
我们容易发现 假如要选出3个元素则编号为1 2 3 2 3 1 3 1 2 这三种排列在检查时是一样的因此枚举全排列时只需要枚举全排列的1 / k即可
最后一个剪枝是 把a数组事先按从大到小排列,若枚举的第一个元素的将所有位置1都无法超过当前最大值,则没有必要从这个元素枚举下去
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <cmath> 6 #include <set> 7 #include <map> 8 #include <queue> 9 10 using namespace std; 11 12 #define read() freopen("sw.in", "r", stdin) 13 14 const int MAX_N = 25; 15 const int MAX = (1 << 7); 16 int N, K, L; 17 struct node { 18 int st[6]; 19 bool operator < (const node &rhs) const { 20 for (int i = 0; i < K; ++i) { 21 if (st[i] != rhs.st[i]) return st[i] < rhs.st[i]; 22 } 23 return 0; 24 } 25 }; 26 27 int x[MAX_N]; 28 bool vis[MAX]; 29 int ele[MAX_N]; 30 int _max; 31 int len = 0; 32 node p[720]; 33 34 35 int cal(int n) { 36 int ret = 0; 37 if (n == 0) ret = 1; 38 while (n > 0) { 39 ++ret; 40 n >>= 1; 41 } 42 43 return (1 << ret) - 1; 44 } 45 46 void check() { 47 int t = 0, _max1 = 0; 48 /*for (int i = 0; i < K; ++i) printf("%d ", ele[i]); 49 printf(" ");*/ 50 memset(vis, 0, sizeof(vis)); 51 int cnt = 0; 52 for (int s = 0; s < (1 << K); ++s) { 53 t = 0; 54 for (int i = 0; i < K; ++i) { 55 if (s >> i & 1) { 56 t ^= ele[i]; 57 } 58 } 59 if (!vis[t]) { 60 vis[t] = 1; 61 if (t >= L && t <= _max + 1) ++cnt; 62 } 63 64 _max1 = max(_max1, t); 65 } 66 67 if (_max1 <= _max || cnt < (_max + 2 - L)) return; 68 69 for (int i = 0; i < len; ++i) { 70 memset(vis, 0, sizeof(vis)); 71 cnt = 0; 72 for (int start = 0; start < K; ++start) { 73 int v; 74 for (int l = 1; l <= K; ++l) { 75 v = 0; 76 for (int pos = start, num = 1; num <= l; pos = (pos + 1) % K, ++num) 77 v ^= ele[ p[i].st[pos] ]; 78 if (!vis[ v ]) { 79 vis[v] = 1; 80 if (v >= L && v <= _max + 1) ++cnt; 81 } 82 } 83 84 } 85 int k = _max + 1; 86 if (cnt < (_max + 2 - L)) continue; 87 while (vis[k] == 1) ++k; 88 _max = max(_max, k - 1); 89 } 90 91 92 93 94 } 95 96 void dfs(int id, int num) { 97 if (num >= K) { 98 //printf("fuck "); 99 check(); 100 return ; 101 } 102 if (id >= N) return ; 103 104 if (num == 0 && cal(x[id]) <= _max) return; 105 ele[num] = x[id]; 106 dfs(id + 1, num + 1); 107 dfs(id + 1, num); 108 } 109 110 111 112 int main() 113 { 114 //read(); 115 while (scanf("%d%d%d", &N, &K, &L) != EOF) { 116 for (int i = 0; i < N; ++i) scanf("%d", &x[i]); 117 set <node> Set; 118 len = 0; 119 int id[6] = {0, 1, 2, 3, 4, 5}; 120 sort(x, x + N, greater<int>()); 121 _max = L - 1; 122 123 do { 124 node st; 125 for (int i = 0; i < K; ++i) st.st[i] = id[i]; 126 if (Set.find(st) != Set.end()) continue; 127 // for (int i = 0; i < K; ++i) printf("%d ", id[i]); 128 //printf(" "); 129 for (int i = 0; i < K; ++i) p[len].st[i] = id[i]; 130 len++; 131 for (int i = 0; i < K; ++i) { 132 for (int m = 0, j = i; m < K; ++m, j = (j + 1) % K) { 133 st.st[m] = id[j]; 134 } 135 Set.insert(st); 136 } 137 138 }while (next_permutation(id, id + K)); 139 140 dfs(0, 0); 141 printf("%d ", _max < L ? 0 : _max); 142 143 144 } 145 //cout << "Hello world!" << endl; 146 return 0; 147 }