There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
public class Solution { public double findMedianSortedArrays(int A[], int B[]) { int len = A.length + B.length; if (len % 2 == 1) { return findKth(A, 0, B, 0, len / 2 + 1); } return ( findKth(A, 0, B, 0, len / 2) + findKth(A, 0, B, 0, len / 2 + 1) ) / 2.0; } // find kth number of two sorted array public static int findKth(int[] A, int A_start, int[] B, int B_start, int k){ if (A_start >= A.length) { return B[B_start + k - 1]; } if (B_start >= B.length) { return A[A_start + k - 1]; } if (k == 1) { return Math.min(A[A_start], B[B_start]); } int A_key = A_start + k / 2 - 1 < A.length ? A[A_start + k / 2 - 1] : Integer.MAX_VALUE; int B_key = B_start + k / 2 - 1 < B.length ? B[B_start + k / 2 - 1] : Integer.MAX_VALUE;
/*首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。*/
if (A_key < B_key) { return findKth(A, A_start + k / 2, B, B_start, k - k / 2); } else { return findKth(A, A_start, B, B_start + k / 2, k - k / 2); } } }
reference:
http://blog.csdn.net/yutianzuijin/article/details/11499917