• *House Robber II


    题目:

    After robbing those houses on that street, the thief has found himself a new place for his thievery so that he will not get too much attention. This time, all houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, the security system for these houses remain the same as for those in the previous street.

    Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

    思路:

    This is an extension of House Robber. There are two cases here 1) 1st element is included and last is not included 2) 1st is not included and last is included. Therefore, we can use the similar dynamic programming approach to scan the array twice and get the larger value.

    代码:

     1 public int rob(int[] nums) {
     2     if(nums==null||nums.length==0)
     3         return 0;
     4  
     5     int n = nums.length;
     6  
     7     if(n==1){
     8         return nums[0];
     9     }    
    10     if(n==2){
    11         return Math.max(nums[1], nums[0]);
    12     }
    13  
    14     //include 1st element, and not last element
    15     int[] dp = new int[n+1];
    16     dp[0]=0;
    17     dp[1]=nums[0];
    18  
    19     for(int i=2; i<n; i++){
    20         dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i-1]);
    21     }
    22  
    23     //not include frist element, and include last element
    24     int[] dr = new int[n+1];
    25     dr[0]=0;
    26     dr[1]=nums[1];
    27  
    28     for(int i=2; i<n; i++){
    29         dr[i] = Math.max(dr[i-1], dr[i-2]+nums[i]);
    30     }
    31  
    32     return Math.max(dp[n-1], dr[n-1]);
    33 }

    运行结果:

    输入nums={1,4,5,2,9,8}

    1. 包括1st,不包括last one

    dp[0]=0

    dp[1]=nums[0]=1

    dp[2]=4,   (dp[1], dp[0]+nums[1])

    dp[3]=6,   (dp[2], dp[1]+nums[2])

    dp[4]=6,   (dp[3], dp[2]+nums[3])

    dp[5]=15, (dp[4], dp[3]+nums[4])

    2. 不包括1st,包括last one

    dr[0]=0

    dr[1]=4

    dr[2]=5,   (dr[1], dr[0]+nums[2])

    dr[3]=6,   (dr[2], dr[1]+nums[3])

    dr[4]=14, (dr[3], dr[2]+nums[4])

    dr[5]=14, (dr[4], dr[3]+nums[5])

    Reference: http://www.programcreek.com/2014/05/leetcode-house-robber-ii-java/

    解法二:

    public class Solution {
     public int rob(int[] nums) {
        if(nums==null||nums.length==0)
            return 0;
     
        int n = nums.length;
     
        if(n==1){
            return nums[0];
        }    
        if(n==2){
            return Math.max(nums[1], nums[0]);
        }
     
        //include 1st element, and not last element
        int[] dp = new int[n+1];
        dp[0]=nums[0];
        dp[1]=nums[0]; //include 1st element, so doesnt consider the 2nd element
     
        for(int i=2; i<n; i++){
            dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i]);  
        }
     
        //not include frist element, and include last element
        int[] dr = new int[n+1];
        dr[0]=0;
        dr[1]=nums[1];
     
        for(int i=2; i<n; i++){
            dr[i] = Math.max(dr[i-1], dr[i-2]+nums[i]);
        }
        return Math.max(dp[n-2], dr[n-1]);  //dp[n-1] include the last element, dp[n-2] is correct. 
    }
    }
  • 相关阅读:
    ASM:《X86汇编语言-从实模式到保护模式》1-4章:处理器,内存和硬盘基础
    Greedy:Paint Color(AOJ 0531)
    Match:DNA repair(POJ 3691)
    Match:Censored!(AC自动机+DP+高精度)(POJ 1625)
    Match:Keywords Search(AC自动机模板)(HDU 2222)
    BM算法和Sunday快速字符串匹配算法
    蓄水池抽样算法
    Match:Milking Grid(二维KMP算法)(POJ 2185)
    Match:Cyclic Nacklace(KMP的next数组的高级应用)(HDU 3746)
    KMP单模快速字符串匹配算法
  • 原文地址:https://www.cnblogs.com/hygeia/p/4647856.html
Copyright © 2020-2023  润新知