• HDU 3415(单调队列)


    Max Sum of Max-K-sub-sequence

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4080 Accepted Submission(s): 1453


    Problem Description
    Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
    Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
     
    Input
    The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
    Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
     
    Output
    For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
     
    Sample Input
    4 6 3 6 -1 2 -6 5 -5 6 4 6 -1 2 -6 5 -5 6 3 -1 2 -6 5 -5 6 6 6 -1 -1 -1 -1 -1 -1
     
    Sample Output
    7 1 3 7 1 3 7 6 2 -1 1 1
     1 /*
     2 题目大意:给出一个有N个数字(N<=10^5)的环状序列,让你求一个和最大的连续子序列。这个连续子序列的长度小于等于K。
     3 输出和,起始和结束位置 
     4 */
     5 #include<iostream>
     6 #include<queue>
     7 using namespace std;
     8 
     9 const int INF = 0x3fffffff;
    10 const int maxn = 100010;
    11 int num[maxn],sum[maxn];
    12 
    13 int main()
    14 {
    15     int T,i,j;
    16     int N,K,n;
    17     cin>>T;
    18     while(T--)
    19     {
    20         cin>>N>>K;
    21         sum[0]=0;
    22         for(i=1;i<=N;i++)
    23         {
    24             cin>>num[i];
    25             sum[i]=sum[i-1]+num[i];
    26         }
    27         for(i=N+1;i<N+K;i++)
    28         {
    29             sum[i]=sum[i-1]+num[i-N];
    30         }
    31         n=N+K-1; 
    32         deque <int> q;
    33         q.clear();
    34         int ans=-INF;
    35         int start,end;
    36         //枚举以j结尾的区间
    37         for(j=1;j<=n;j++)
    38         {
    39             while(!q.empty() && sum[j-1]<sum[q.back()])
    40                 q.pop_back();
    41             while(!q.empty() && q.front()<(j-K))//区间最大长度是K ,没有等号,因为入队的是 (j-1)
    42                 q.pop_front();
    43             q.push_back(j-1);
    44             if(sum[j]-sum[q.front()]>ans)
    45             {
    46                 ans=sum[j]-sum[q.front()];
    47        //i到j和是,sum[8] - sum[5] = sum[6]+sum[7]+sum[8]



           start=q.front()+1; 48 end=j; 49 } 50 } 51 cout<<ans<<" "<<start<<" "<<(end>N?end%N:end)<<endl; 52 } 53 return 0; 54 }
    ////暴力枚举起点和终点估计会超时
     
  • 相关阅读:
    linux学习记录-----vsftpd服务安装配置
    PTA数据结构第一次作业
    第十一次作业
    第十次作业
    第九次作业
    第八次作业
    第七次作业
    第六次作业
    第五次作业
    第四次作业
  • 原文地址:https://www.cnblogs.com/hxsyl/p/2668622.html
Copyright © 2020-2023  润新知