• LOJ#2245 魔法森林


    这道题以前zbtrs大佬给我讲过。但是我只知道思想,不知道要lct维护...

    这个套路很常见。

    题意:给你一个无向图,每条边有a,b两个权值。求1到n号点的一条路径,路径的权值是每条边的最大a与最大b之和。求可能的最小权值。无解输出-1。

    解:有个很朴素的想法是爆搜......

    有个很朴素(??)的想法,最后路径的a最大值一定是某条边的a,于是我们枚举这个a,每次把小于a的边都加进去,然后若1,n连通就跑b的最短路。这样就有50分了。

    然后我们发现每次跑最短路的时间不可承受,如何优化呢?

    我们肯定会在某一时刻加出环,然后我们发现这个环上的a的大小是无关紧要的,我们把环上b最大的边去掉,这样就是一棵树了。

    然后用lct实行这个操作,时间复杂度mlog(n + m)。

    注意这里没有点权,只有边权,而且边全都给出来了,我们就对于每个边新建一个点代表它就行了...具体看代码。

      1 // NOI 2014 mofa forest
      2 #include <cstdio>
      3 #include <algorithm>
      4 
      5 const int N = 50010, M = 100010, INF = 0x7f7f7f7f;
      6 
      7 inline void read(int &x) {
      8     char c = getchar();
      9     bool f = 0;
     10     while(c < '0' || c > '9') {
     11         if(c == '-') {
     12             f = 1;
     13         }
     14         c = getchar();
     15     }
     16     while(c >= '0' && c <= '9') {
     17         x = (x << 3) + (x << 1) + c - 48;
     18         c = getchar();
     19     }
     20     if(f) {
     21         x = -x;
     22     }
     23     return;
     24 }
     25 
     26 struct Edge {
     27     int u, v;
     28     int a, b;
     29     inline bool operator <(const Edge &d) const {
     30         if(a != d.a) {
     31             return a < d.a;
     32         }
     33         return b < d.b;
     34     }
     35 }edge[M];
     36 
     37 struct UFS {
     38     int fa[N + M];
     39 
     40     inline void clear() {
     41         for(int i = 1; i < N + M; i++) {
     42             fa[i] = i;
     43         }
     44         return;
     45     }
     46 
     47     UFS() {
     48         clear();
     49     }
     50 
     51     inline int find(int x) {
     52         if(fa[x] == x) {
     53             return x;
     54         }
     55         return fa[x] = find(fa[x]);
     56     }
     57 
     58     inline void merge(int x, int y) {
     59         fa[find(x)] = find(y);
     60         return;
     61     }
     62 
     63     inline bool check(int x, int y) {
     64         return find(x) == find(y);
     65     }
     66 }ufs;
     67 
     68 struct LCT {
     69     int val[N + M], fa[N + M], s[N + M][2], large[N + M], stk[N + M], t;
     70     bool rev[N + M];
     71 
     72     inline int no_root(int x) {
     73         return s[fa[x]][0] == x || s[fa[x]][1] == x;
     74     }
     75 
     76     inline void pushup(int x) {
     77         large[x] = x;
     78         if(val[large[x]] < val[large[s[x][0]]]) {
     79             large[x] = large[s[x][0]];
     80         }
     81         if(val[large[x]] < val[large[s[x][1]]]) {
     82             large[x] = large[s[x][1]];
     83         }
     84         return;
     85     }
     86 
     87     inline void pushdown(int x) {
     88         if(!rev[x]) {
     89             return;
     90         }
     91         if(s[x][0]) {
     92             rev[s[x][0]] ^= 1;
     93         }
     94         if(s[x][1]) {
     95             rev[s[x][1]] ^= 1;
     96         }
     97         std::swap(s[x][0], s[x][1]);
     98         rev[x] = 0;
     99         return;
    100     }
    101 
    102     inline void rotate(int x) {
    103         int y = fa[x];
    104         int z = fa[y];
    105         bool f = (s[y][1] == x);
    106 
    107         fa[x] = z;
    108         if(no_root(y)) {
    109             s[z][s[z][1] == y] = x;
    110         }
    111         s[y][f] = s[x][!f];
    112         fa[s[x][!f]] = y;
    113         s[x][!f] = y;
    114         fa[y] = x;
    115 
    116         pushup(y);
    117         pushup(x);
    118         return;
    119     }
    120 
    121     inline void splay(int x) {
    122         int y = x;
    123         stk[++t] = x;
    124         while(no_root(y)) {
    125             y = fa[y];
    126             stk[++t] = y;
    127         }
    128         while(t) {
    129             pushdown(stk[t]);
    130             t--;
    131         }
    132         y = fa[x];
    133         int z = fa[y];
    134         while(no_root(x)) {
    135             if(no_root(y)) {
    136                 (s[z][1] == y) ^ (s[y][1] == x) ?
    137                 rotate(x) : rotate(y);
    138             }
    139             rotate(x);
    140             y = fa[x];
    141             z = fa[y];
    142         }
    143         return;
    144     }
    145 
    146     inline void access(int x) {
    147         int y = 0;
    148         while(x) {
    149             splay(x);
    150             s[x][1] = y;
    151             pushup(x);
    152             y = x;
    153             x = fa[x];
    154         }
    155         return;
    156     }
    157 
    158     inline int findroot(int x) {
    159         access(x);
    160         splay(x);
    161         pushdown(x);
    162         while(s[x][0]) {
    163             x = s[x][0];
    164             pushdown(x);
    165         }
    166         return x;
    167     }
    168 
    169     inline void makeroot(int x) {
    170         access(x);
    171         splay(x);
    172         rev[x] = 1;
    173         return;
    174     }
    175 
    176     inline void link(int x, int y) {
    177         makeroot(x);
    178         if(findroot(y) != x) {
    179             fa[x] = y;
    180         }
    181         return;
    182     }
    183 
    184     inline void cut(int x, int y) {
    185         makeroot(x);
    186         access(y);
    187         splay(y);
    188         if(s[y][0] == x && fa[x] == y && s[x][1] == 0) {
    189             fa[x] = 0;
    190             s[y][0] = 0;
    191             pushup(y);
    192         }
    193         return;
    194     }
    195 
    196     inline int getmax(int x, int y) {
    197         makeroot(x);
    198         access(y);
    199         splay(y);
    200         return large[y];
    201     }
    202 }lct;
    203 
    204 int main()  {
    205     int n, m, ans = INF;
    206     scanf("%d%d", &n, &m);
    207     for(int i = 1; i <= m; i++) {
    208         read(edge[i].u);
    209         read(edge[i].v);
    210         read(edge[i].a);
    211         read(edge[i].b);
    212     }
    213     std::sort(edge + 1, edge + m + 1);
    214     for(int i = 1; i <= m; i++) {
    215         lct.val[i + n] = edge[i].b;
    216     }
    217 
    218     for(int i = 1; i <= m; i++) {
    219         int x = edge[i].u;
    220         int y = edge[i].v;
    221         //printf("%d - %d  a = %d  b = %d  
    ", x, y, edge[i].a, edge[i].b);
    222         if(ufs.check(x, y)) {
    223             int t = lct.getmax(x, y);
    224             if(lct.val[t] > edge[i].b) {
    225                 lct.cut(edge[t - n].u, t);
    226                 lct.cut(edge[t - n].v, t);
    227                 lct.link(x, i + n);
    228                 lct.link(y, i + n);
    229                 if(ufs.check(1, n)) {
    230                     ans = std::min(ans, edge[i].a + lct.val[lct.getmax(1, n)]);
    231                 }
    232                 //printf("1 : ans = %d 
    ", ans);
    233             }
    234         }
    235         else {
    236             ufs.merge(x, y);
    237             lct.link(x, i + n);
    238             lct.link(y, i + n);
    239             if(ufs.check(1, n)) {
    240                 ans = std::min(ans, edge[i].a + lct.val[lct.getmax(1, n)]);
    241                 //printf("2 : ans = %d 
    ", ans);
    242             }
    243         }
    244     }
    245     printf("%d", ans == INF ? -1 : ans);
    246     return 0;
    247 }
    AC代码

    update:前面15分是搜索,50分是枚举一条边,暴力维护生成树。70分是枚举a的取值,并查集维护。看代码吧。

      1 #include <bits/stdc++.h>
      2 
      3 const int N = 200010, INF = 0x3f3f3f3f;
      4 
      5 struct Edge {
      6     int nex, v, a, b, pre;
      7 }edge[N << 1]; int tp = 1;
      8 
      9 struct Node {
     10     int a, b, x, y;
     11     inline bool operator < (const Node &w) const {
     12         return a < w.a;
     13     }
     14 }node[N << 1];
     15 
     16 int e[N], n, m;
     17 std::multiset<int> st;
     18 
     19 inline void add(int x, int y, int a, int b) {
     20     tp++;
     21     edge[tp].v = y;
     22     edge[tp].a = a;
     23     edge[tp].b = b;
     24     edge[tp].nex = e[x];
     25     if(e[x]) edge[e[x]].pre = tp;
     26     e[x] = tp;
     27     return;
     28 }
     29 
     30 inline void del(int x, int i) {
     31     if(!edge[i].nex && e[x] == i) {
     32         e[x] = 0;
     33     }
     34     else if(!edge[i].nex) {
     35         edge[edge[i].pre].nex = 0;
     36     }
     37     else if(e[x] == i) {
     38         e[x] = edge[i].nex;
     39         edge[e[x]].pre = 0;
     40     }
     41     else {
     42         edge[edge[i].pre].nex = edge[i].nex;
     43         edge[edge[i].nex].pre = edge[i].pre;
     44     }
     45     return;
     46 }
     47 
     48 inline void Link() {
     49     for(int i = 1; i <= m; i++) {
     50         add(node[i].x, node[i].y, node[i].a, node[i].b);
     51         add(node[i].y, node[i].x, node[i].a, node[i].b);
     52     }
     53     return;
     54 }
     55 
     56 namespace bf {
     57     int ans = INF;
     58     bool vis[N];
     59     void DFS(int x, int a, int b) {
     60         if(x == n) {
     61             ans = std::min(ans, a + b);
     62             return;
     63         }
     64         vis[x] = 1;
     65         for(int i = e[x]; i; i = edge[i].nex) {
     66             int y = edge[i].v;
     67             if(vis[y]) continue;
     68             DFS(y, std::max(a, edge[i].a), std::max(b, edge[i].b));
     69         }
     70         vis[x] = 0;
     71         return;
     72     }
     73     inline void solve() {
     74         Link();
     75         DFS(1, 0, 0);
     76         if(ans == INF) ans = -1;
     77         printf("%d
    ", ans);
     78         return;
     79     }
     80 }
     81 
     82 namespace ufs {
     83     int fa[N];
     84     inline void init() {
     85         for(int i = 1; i <= n; i++) fa[i] = i;
     86         return;
     87     }
     88     int find(int x) {
     89         if(fa[x] == x) return x;
     90         return fa[x] = find(fa[x]);
     91     }
     92     inline void merge(int x, int y) {
     93         fa[find(x)] = find(y);
     94         return;
     95     }
     96     inline bool check(int x, int y) {
     97         return find(x) == find(y);
     98     }
     99 }
    100 
    101 namespace bf2 {
    102     int Time, large, pos, vis[N];
    103     bool DFS(int x, int t) {
    104         if(x == t) return true;
    105         vis[x] = Time;
    106         for(int i = e[x]; i; i = edge[i].nex) {
    107             int y = edge[i].v;
    108             if(vis[y] == Time) continue;
    109             if(DFS(y, t)) {
    110                 if(large < edge[i].b) {
    111                     large = edge[i].b;
    112                     pos = i;
    113                 }
    114                 return true;
    115             }
    116         }
    117         return false;
    118     }
    119     int getMax(int x) {
    120         if(x == n) return 0;
    121         vis[x] = Time;
    122         for(int i = e[x]; i; i = edge[i].nex) {
    123             int y = edge[i].v;
    124             if(vis[y] == Time) continue;
    125             int t = getMax(y);
    126             if(t == -1) continue;
    127             return std::max(t, edge[i].b);
    128         }
    129         return -1;
    130     }
    131     inline void solve() {
    132         int ans = INF;
    133         ufs::init();
    134         for(int i = 1; i <= m; i++) {
    135             int x = node[i].x, y = node[i].y;
    136             if(ufs::check(x, y)) {
    137                 large = -1;
    138                 ++Time;
    139                 DFS(x, y);
    140                 if(large <= node[i].b) continue;
    141                 del(edge[pos ^ 1].v, pos);
    142                 del(edge[pos].v, pos ^ 1);
    143                 add(x, y, node[i].a, node[i].b);
    144                 add(y, x, node[i].a, node[i].b);
    145             }
    146             else {
    147                 ufs::merge(x, y);
    148                 add(x, y, node[i].a, node[i].b);
    149                 add(y, x, node[i].a, node[i].b);
    150             }
    151             if(ufs::check(1, n)) {
    152                 ++Time;
    153                 int temp = getMax(1);
    154                 ans = std::min(ans, node[i].a + temp);
    155             }
    156         }
    157         if(ans == INF) ans = -1;
    158         printf("%d
    ", ans);
    159         return;
    160     }
    161 }
    162 
    163 namespace bf3 {
    164     inline bool cmp(const Node &x, const Node &y) {
    165         return x.b < y.b;
    166     }
    167     inline void solve() {
    168         std::sort(node + 1, node + m + 1, cmp);
    169         int ans = INF;
    170         for(int lim = 1; lim <= 30; lim++) {
    171             ufs::init();
    172             int temp = INF;
    173             for(int i = 1; i <= m; i++) {
    174                 if(node[i].a > lim) {
    175                     continue;
    176                 }
    177                 ufs::merge(node[i].x, node[i].y);
    178                 if(ufs::check(1, n)) {
    179                     temp = node[i].b;
    180                     break;
    181                 }
    182             }
    183             ans = std::min(ans, lim + temp);
    184         }
    185         if(ans == INF) ans = -1;
    186         printf("%d
    ", ans);
    187         return;
    188     }
    189 }
    190 
    191 namespace lct {
    192     int fa[N], s[N][2], large[N], val[N], stk[N], top;
    193     bool rev[N];
    194     inline bool no_root(int x) {
    195         return s[fa[x]][0] == x || s[fa[x]][1] == x;
    196     }
    197     inline void pushup(int x) {
    198         large[x] = x;
    199         if(s[x][0] && val[large[x]] < val[large[s[x][0]]]) {
    200             large[x] = large[s[x][0]];
    201         }
    202         if(s[x][1] && val[large[x]] < val[large[s[x][1]]]) {
    203             large[x] = large[s[x][1]];
    204         }
    205         return;
    206     }
    207     inline void pushdown(int x) {
    208         if(rev[x]) {
    209             if(s[x][0]) rev[s[x][0]] ^= 1;
    210             if(s[x][1]) rev[s[x][1]] ^= 1;
    211             std::swap(s[x][0], s[x][1]);
    212             rev[x] = 0;
    213         }
    214         return;
    215     }
    216     inline void rotate(int x) {
    217         int y = fa[x];
    218         int z = fa[y];
    219         bool f = (s[y][1] == x);
    220 
    221         fa[x] = z;
    222         if(no_root(y)) {
    223             s[z][s[z][1] == y] = x;
    224         }
    225         s[y][f] = s[x][!f];
    226         if(s[x][!f]) {
    227             fa[s[x][!f]] = y;
    228         }
    229         s[x][!f] = y;
    230         fa[y] = x;
    231 
    232         pushup(y);
    233         return;
    234     }
    235     inline void splay(int x) {
    236         int y = x;
    237         stk[top = 1] = y;
    238         while(no_root(y)) {
    239             y = fa[y];
    240             stk[++top] = y;
    241         }
    242         while(top) {
    243             pushdown(stk[top]);
    244             top--;
    245         }
    246 
    247         y = fa[x];
    248         int z = fa[y];
    249         while(no_root(x)) {
    250             if(no_root(y)) {
    251                 (s[z][1] == y) ^ (s[y][1] == x) ?
    252                 rotate(x) : rotate(y);
    253             }
    254             rotate(x);
    255             y = fa[x];
    256             z = fa[y];
    257         }
    258         pushup(x);
    259         return;
    260     }
    261     inline void access(int x) {
    262         int y = 0;
    263         while(x) {
    264             splay(x);
    265             s[x][1] = y;
    266             pushup(x);
    267             y = x;
    268             x = fa[x];
    269         }
    270         return;
    271     }
    272     inline void make_root(int x) {
    273         access(x);
    274         splay(x);
    275         rev[x] ^= 1;
    276         return;
    277     }
    278     inline int find_root(int x) {
    279         access(x);
    280         splay(x);
    281         while(s[x][0]) {
    282             x = s[x][0];
    283             pushdown(x);
    284         }
    285         splay(x);
    286         return x;
    287     }
    288     inline void link(int x, int y) {
    289         make_root(x);
    290         fa[x] = y;
    291         return;
    292     }
    293     inline void cut(int x, int y) {
    294         make_root(x);
    295         access(y);
    296         splay(y);
    297         fa[x] = s[y][0] = 0;
    298         pushup(y);
    299         return;
    300     }
    301     inline int ask(int x, int y) {
    302         make_root(x);
    303         access(y);
    304         splay(y);
    305         return large[y];
    306     }
    307 }
    308 
    309 int main() {
    310     scanf("%d%d", &n, &m);
    311     int largeA = -1;
    312     for(int i = 1; i <= m; i++) {
    313         scanf("%d%d%d%d", &node[i].x, &node[i].y, &node[i].a, &node[i].b);
    314         largeA = std::max(largeA, node[i].a);
    315     }
    316     std::sort(node + 1, node + m + 1);
    317     if(n <= 5 && m <= 10) {
    318         bf::solve();
    319         return 0;
    320     }
    321     if(n <= 5000 && m <= 10000) {
    322         bf2::solve();
    323         return 0;
    324     }
    325     if(largeA <= 30) {
    326         bf3::solve();
    327         return 0;
    328     }
    329     /// lct solve
    330     int ans = INF;
    331     ufs::init();
    332     for(int i = 1; i <= m; i++) {
    333         lct::val[n + i] = node[i].b;
    334     }
    335     for(int i = 1; i <= m; i++) {
    336         int x = node[i].x, y = node[i].y;
    337         if(ufs::check(x, y)){
    338             int t = lct::ask(x, y);
    339             if(lct::val[t] <= node[i].b) continue;
    340             lct::cut(t, node[t - n].x);
    341             lct::cut(t, node[t - n].y);
    342             lct::link(x, n + i);
    343             lct::link(y, n + i);
    344         }
    345         else {
    346             lct::link(x, n + i);
    347             lct::link(y, n + i);
    348             ufs::merge(x, y);
    349         }
    350         if(ufs::check(1, n)) {
    351             ans = std::min(ans, node[i].a + lct::val[lct::ask(1, n)]);
    352         }
    353     }
    354     if(ans == INF) ans = -1;
    355     printf("%d
    ", ans);
    356     return 0;
    357 }
    AC代码
  • 相关阅读:
    过度使用DBLINK做系统集成会带来的问题
    微服务架构优缺点
    linux + svn提交日志不能显示 日期一直都是1970-01-01
    maven 无法导入ojdbc 的jar包 解决方法
    认识webservice
    tensorflow-gpu2.1缺少libcudnn.so.7
    tensorflow-gpu2.1.0报错 so returning NUMA node zero解决办法
    基于YOLO-V2的行人检测(自训练)附pytorch安装方法
    电脑键盘背景灯无法控制
    pip升级失败
  • 原文地址:https://www.cnblogs.com/huyufeifei/p/9750804.html
Copyright © 2020-2023  润新知