• 洛谷P3233 世界树


    题意:给定树上k个关键点,每个点属于离他最近,然后编号最小的关键点。求每个关键点管辖多少点。

    解:虚树 + DP。

    虚树不解释。主要是DP。用二元组存虚树上每个点的归属和距离。这一部分是二次扫描与换根法。

    然后把关键点改为虚树节点,统计每个虚树节点管辖多少个节点,用SIZ表示,初始时SIZ = siz,SIZ[RT] = n。

    如果一条虚树边两端点的归属相同。那么SIZ[fa] -= siz[son]

    否则树上倍增找到y是最靠上属于的son的,然后SIZ[fa] -= siz[y] SIZ[son] = siz[y]

      1 #include <cstdio>
      2 #include <algorithm>
      3 #include <vector>
      4 #include <cstring>
      5 
      6 typedef long long LL;
      7 const int N = 300010, INF = 0x3f3f3f3f;
      8 
      9 struct Edge {
     10     int nex, v, len;
     11 }edge[N * 2], EDGE[N * 2]; int tp, TP;
     12 
     13 struct Node {
     14     int x, d;
     15     Node(int X = 0, int D = 0) {
     16         x = X;
     17         d = D;
     18     }
     19 }small[N];
     20 
     21 int e[N], E[N], RT, siz[N], d[N], num, pos[N], pw[N], Time, imp[N], stk[N], top, now[N], imp2[N];
     22 int ans[N], fr[N], SIZ[N], n, fa[N][20], use[N];
     23 
     24 inline void add(int x, int y) {
     25     tp++;
     26     edge[tp].v = y;
     27     edge[tp].nex = e[x];
     28     e[x] = tp;
     29     return;
     30 }
     31 
     32 inline void ADD(int x, int y) {
     33 //    printf("ADD %d %d 
    ", x, y);
     34     TP++;
     35     EDGE[TP].v = y;
     36     EDGE[TP].len = d[y] - d[x];
     37     EDGE[TP].nex = E[x];
     38     E[x] = TP;
     39     return;
     40 }
     41 
     42 inline bool cmp(const int &a, const int &b) {
     43     return pos[a] < pos[b];
     44 }
     45 
     46 void DFS_1(int x, int father) {
     47     fa[x][0] = father;
     48     d[x] = d[father] + 1;
     49     siz[x] = 1;
     50     pos[x] = ++num;
     51     for(int i = e[x]; i; i = edge[i].nex) {
     52         int y = edge[i].v;
     53         if(y == father) {
     54             continue;
     55         }
     56         DFS_1(y, x);
     57         siz[x] += siz[y];
     58     }
     59     return;
     60 }
     61 
     62 inline int lca(int x, int y) {
     63     if(d[x] > d[y]) {
     64         std::swap(x, y);
     65     }
     66     int t = pw[n];
     67     while(t >= 0 && d[x] < d[y]) {
     68         if(d[fa[y][t]] >= d[x]) {
     69             y = fa[y][t];
     70         }
     71         t--;
     72     }
     73     if(x == y) {
     74         return x;
     75     }
     76     t = pw[n];
     77     while(t >= 0 && fa[x][0] != fa[y][0]) {
     78         if(fa[x][t] != fa[y][t]) {
     79             x = fa[x][t];
     80             y = fa[y][t];
     81         }
     82         t--;
     83     }
     84     return fa[x][0];
     85 }
     86 
     87 inline void clear(int x) {
     88     if(use[x] != Time) {
     89         use[x] = Time;
     90         E[x] = 0;
     91     }
     92     return;
     93 }
     94 
     95 inline void build_t(int k) {
     96     std::sort(imp + 1, imp + k + 1, cmp);
     97     TP = top = 0;
     98     clear(imp[1]);
     99     stk[++top] = imp[1];
    100     for(int i = 2; i <= k; i++) {
    101         int x = imp[i], y = lca(stk[top], x);
    102         clear(x); clear(y);
    103         while(top > 1 && pos[y] <= pos[stk[top - 1]]) {
    104             ADD(stk[top - 1], stk[top]);
    105             top--;
    106         }
    107         if(y != stk[top]) {
    108             ADD(y, stk[top]);
    109             stk[top] = y;
    110         }
    111         stk[++top] = x;
    112     }
    113     while(top > 1) {
    114         ADD(stk[top - 1], stk[top]);
    115         top--;
    116     }
    117     RT = stk[top];
    118     return;
    119 }
    120 
    121 void out_t(int x) {
    122     printf("out x = %d 
    ", x);
    123     for(int i = E[x]; i; i = EDGE[i].nex) {
    124         int y = EDGE[i].v;
    125 //        printf("EDGE %d y %d 
    ", i, y);
    126         out_t(y);
    127     }
    128     return;
    129 }
    130 
    131 void getSmall(int x) {
    132     (now[x] == Time) ? small[x] = Node(x, 0) : small[x] = Node(n + 1, INF);
    133 //    printf("getSmall x = %d small = %d 
    ", x, small[x].x);
    134     SIZ[x] = siz[x];
    135     for(int i = E[x]; i; i = EDGE[i].nex) {
    136         int y = EDGE[i].v;
    137         getSmall(y);
    138         if(small[x].d > small[y].d + EDGE[i].len) {
    139             small[x] = small[y];
    140             small[x].d += EDGE[i].len;
    141         }
    142         else if(small[x].d == small[y].d + EDGE[i].len) {
    143             small[x].x = std::min(small[x].x, small[y].x);
    144         }
    145     }
    146     return;
    147 }
    148 
    149 void getEXsmall(int x, Node t) {
    150 //    printf("EX x = %d small = %d 
    ", x, small[x].x);
    151     if(small[x].d > t.d || (small[x].d == t.d && small[x].x > t.x)) {
    152         small[x] = t;
    153     }
    154 //    printf("x = %d small = %d 
    ", x, small[x].x);
    155     for(int i = E[x]; i; i = EDGE[i].nex) {
    156         int y = EDGE[i].v;
    157         getEXsmall(y, Node(small[x].x, small[x].d + EDGE[i].len));
    158     }
    159     return;
    160 }
    161 
    162 inline int getPos(int x, int f) {
    163     int t = pw[d[x] - d[f]], y = x;
    164     while(t >= 0) {
    165         int mid = fa[y][t];
    166         if(d[x] - d[mid] + small[x].d < d[mid] - d[f] + small[f].d) {
    167             y = mid;
    168         }
    169         else if(d[x] - d[mid] + small[x].d == d[mid] - d[f] + small[f].d && small[f].x > small[x].x) {
    170             y = mid;
    171         }
    172         t--;
    173     }
    174     return y;
    175 }
    176 
    177 void del(int x, int f) {
    178 //    printf("del x = %d small = %d %d 
    ", x, small[x].x, small[x].d);
    179     if(f) {
    180         if(small[x].x == small[f].x) {
    181             SIZ[f] -= siz[x];
    182 //            printf("SIZ %d -= %d = %d 
    ", f, siz[x], SIZ[f]);
    183         }
    184         else {
    185             int y = getPos(x, f);
    186             SIZ[f] -= siz[y];
    187 //            printf("SIZ %d -= %d = %d 
    ", f, siz[y], SIZ[f]);
    188             SIZ[x] = siz[y];
    189 //            printf("SIZ %d = siz %d  %d 
    ", x, y, siz[y]);
    190         }
    191     }
    192     for(int i = E[x]; i; i = EDGE[i].nex) {
    193         int y = EDGE[i].v;
    194         del(y, x);
    195     }
    196     ans[small[x].x] += SIZ[x];
    197     return;
    198 }
    199 
    200 inline void solve() {
    201     int k;
    202     scanf("%d", &k);
    203     Time++;
    204     for(int i = 1; i <= k; i++) {
    205         scanf("%d", &imp[i]);
    206         now[imp[i]] = Time;
    207         ans[imp[i]] = 0;
    208     }
    209     memcpy(imp2 + 1, imp + 1, k * sizeof(int));
    210     build_t(k);
    211 
    212 //    out_t(RT);
    213     // get Small
    214     getSmall(RT); // get Size
    215     getEXsmall(RT, Node(n + 1, INF));
    216     //
    217     SIZ[RT] = n;
    218     del(RT, 0);
    219     for(int i = 1; i <= k; i++) {
    220         printf("%d ", ans[imp2[i]]);
    221     }
    222     printf("
    ");
    223     return;
    224 }
    225 
    226 int main() {
    227 
    228 //    freopen("in.in", "r", stdin);
    229 //    freopen("a.out", "w", stdout);
    230 
    231     scanf("%d", &n);
    232     for(int i = 1, x, y; i < n; i++) {
    233         scanf("%d%d", &x, &y);
    234         add(x, y);
    235         add(y, x);
    236     }
    237     DFS_1(1, 0);
    238     for(int i = 2; i <= n; i++) {
    239         pw[i] = pw[i >> 1] + 1;
    240     }
    241     for(int j = 1; j <= pw[n]; j++) {
    242         for(int i = 1; i <= n; i++) {
    243             fa[i][j] = fa[fa[i][j - 1]][j - 1];
    244         }
    245     }
    246     int q;
    247     scanf("%d", &q);
    248     while(q--) {
    249         solve();
    250     }
    251     return 0;
    252 }
    AC代码
  • 相关阅读:
    oracle 释放表空间到OS(resize)
    dblink查找对应的目标端session
    oralce move和shrink释放高水位
    使用ogg实现oracle到postgresql表的实时同步
    oracle_fdw的安装和使用
    postgresql数据库升级
    ORA-00054: 資源正被使用中, 請設定 NOWAIT 來取得它, 否則逾時到期
    贪心算法应用-哈夫曼编码
    9 深拷贝学习
    8 标准库C文件
  • 原文地址:https://www.cnblogs.com/huyufeifei/p/10413471.html
Copyright © 2020-2023  润新知