• 【计算机视觉】计算机视觉/图像/模式识别方向期刊会议


    第一章:会议 conferences
    一般来说,学术会议会设置很多chairs,各种chairs职责不同。General chairs是负责组织会议的准备和进行的,program chairs负责接收paper并确定paper的领域。各个领域会有area chairs,负责将每篇paper分发给不同的reviewer。Reviewer不属于会议的领导层。会议的审稿分为双盲,单盲和全透明。双盲就是审稿人不知道审的是谁的,作者也不知道自己的paper由谁审。单盲就是审稿人知道在审谁的paper,作者却不知道自己的paper被谁审。全透明就是双方都知道。视觉界三大会议CVPR,ICCV,ECCV都是双盲的。很多大牛导师不喜欢双盲,因为自己的牛文可能被一个小弱reviewer给拒了。如果不是双盲审稿,reviewer基本不会去拒大牛的paper。这就是跟牛导师的一大好处。

    会议没有影响因子一说,但是也有很多评价会议好坏的指标,比如H-index,这个后面再讲。还有一个就是接受率acceptance rates。好的会议接受率一般会比较低。一般会议在提交截止日期三个月之后会告诉你是否接受你的论文。中国学生投会议一般都要优先考虑会议地点,因为中国护照和签证问题是个致命伤。开完了会,你的paper会以会议的proceeding的形式成为出版物。但是如果你的paper被会议接受了,但是你没去开会,不仅你的paper不会被proceeding收录,而且还可能被加入黑名单。“投了会议却不去开会是严重的学术不端行为。”——引自我老板

    第二章:期刊 journals
    视觉,图像和模式领域一般都不讨论影响因子IF这个概念,因为实在是太特么低了,顶级的TPAMI也才在4到6之间波动,而生物、化学相关的专业随便一个期刊的IF都是十几二十几。H-index是个不错的指标,而且可以和会议一起进行比较。
    期刊的审稿一般都不是双盲的,审稿人都会知道自己审的是谁的稿,有时还会主动和你联系。因此,那些比较有名的实验室发期刊一般比较容易,但是那些新的实验室或者小的实验室就很难发了,这也造成了一定程度上的不公平。
    期刊的审稿是非常非常慢的,而且步骤多,很麻烦。提交之后,先有工作人员给你审格式,格式不对直接退回,格式对了才能送往reviewer手中。以TPAMI为例,第一轮review一般在3个月到半年之间,结果有五种:直接接受,接受但需要小改,接受但需要大改,重新提交,拒绝接受。第二轮review一般2到4个月,结果有三种:接受,接受但需要小改,拒绝接受。

    第三章:H-Index
    H-index是一个混合量化指标,可用于评估研究人员的学术产出数量与学术产出水平。一个人在其所有学术文章中有N篇论文分别被引用了至少N次,他的H-index就是N。同样,H-index也可以用来衡量会议和期刊的影响力。一个会议和期刊的H-index可以在微软的学术搜索中找到:http://academic.research.microsoft.com/
    在我们领域,只有一个期刊的H-index是超过200的,那就是TPAMI,也有人简写为PAMI。很多流芳千古的论文都出自TPAMI。博士期间要是发过一篇TPAMI,那绝对是大神级别的。当然,TPAMI也是我的目标,但是实现起来还是有点难的。
    此外,有很多H-index在100以上的会议和期刊,像IJCV,ICCV,ECCV,CVPR,NIPS,AAAI等。博士期间能够发一两篇,就算是大牛了。
    H-index在50以上,也算是优质的期刊和会议了,但是收录的文章质量参差不齐。比如我老板为editor的CVIU,H-index为89,不算太高,里面估计也有不少灌水的论文,但是有很多著名的文章都是从CVIU出来的,比如SURF特征,Active Shape Models,和大量的survey文章。
    H-index在20到50之间的,就是水分比较大的了。一帮教授在一起,想自己过过当chairs的瘾,就自己组一个会议,邀请同行来投稿。这个档次的期刊和会议关注度不是那么高,但也不能说它们差。博士前几年把自己的论文投过去,不仅可以作为starter,还可以去会议认识人,出去走一走,非常不错的。
    H-index在20以下的,那就很水了,一般都是一些刚刚组建实验室的导师,为了积累自己的publication history,便鼓励自己的学生去发表,等到积累了一定的数量,再去冲刺高级别的会议和期刊。人都是有渐进过程的,所以不要鄙视灌水的人,别人这么做都有自己的原因。但如果你导师是大牛,你还拿个大作业级别的东西去灌这种期刊或者会议,那肯定要被人鄙视的。当然,如果会议地点在夏威夷之类的地方,那又另当别论了。
    最后,推荐我学长做的一个网站:http://www.thecomputervision.com/
    更新:该网站已与视觉界第一大网站Computer Vision Central合并!http://cvisioncentral.com/

    顺便给出我搜集的一些期刊和会议的H-index供大家比较:
    期刊 Journals:
    -TPAMI: 242
    -IEEE Transactions on Image Processing: 153
    -IJCV: 152
    -IEEE Transactions on Medical Imaging: 129
    -Pattern Recognition: 112
    =============================================
    -JMLR: 90
    -CVIU: 89
    -Image and Vision Computing: 80
    -MIA: 58
    =============================================
    -JMIV: 45
    -IJPRAI: 39
    -Machine Vision and Applications: 38
    -PAA: 29
    -International Journal of Image and Graphics: 16
    -Journal of Real-time Image Processing: 10
    -PRIA: 7
    -Signal, Image and Video Processing: 7

    会议 Conferences:
    -CVPR: 153
    -SIGGRAPH: 182
    -NIPS: 133
    -AAAI: 132
    -ICCV: 126
    -ICML: 126
    -ECCV: 105
    =============================================
    -ICASSP: 98
    -ICIP: 74
    -ICPR: 69
    -BMVC: 51
    =============================================
    -MICCAI: 47
    -IPMI: 39
    -WACV: 34
    -ACCV: 30
    -MMBIA: 23
    -ISBI: 21
    -ICIAR: 12
    -ICISP: 5

    顺带给出别的领域的一些期刊会议的H-index:
    -Nature: 615 
    -ICRA: 108
    -ICINCO: 10
    -ICARCV: 8


    PS: 关于H-index的理解,会有一些误区。H-index不是万能的,只是一个简单的参考。比如MICCAI的H-index只有47,但其实MICCAI差不多是和CVPR一个级别的会议,只是侧重点不同而已。很多实验室都会把牛paper往MICCAI和CVPR之间轮着投。IPMI的H-index只有39,但IPMI其实是一个很小众但是很高端的会议,去参加IPMI决不能当作是去旅游的,presentation如果准备不周到会被羞辱到死的。此外,每个教授也会有自己的H-index,这个更不能说明问题了。因为随着时间推进科技发展,人类的出版物是指数增加的。很多著名的老教授,发的论文并不多,尽管有很多经典的论文,影响都很大,但H-index不高。很多年轻的教授,没有太著名的论文,但是数量巨多,也会有一些不错的论文,但都算不上经典,他的H-index也会很高。最后,很多真正的牛人是不需要灌水的。多年科研默默无闻,最后发一篇顶级,秒杀所有人。

  • 相关阅读:
    java包和jar包
    java异常总结
    java异常练习2
    java中的异常处理机制_函数覆盖时的异常特点
    React(三)TableBar,ToDoList,Redux案例
    React(二)组件通信
    React(二)组件通信
    React(一)起步
    React(一)起步
    Vue(二)进阶
  • 原文地址:https://www.cnblogs.com/huty/p/8518810.html
Copyright © 2020-2023  润新知