• Java高并发,如何解决,什么方式解决


    java高并发:

    并发:当有多个线程在操作时,如果系统只有一个CPU,则它根本不可能真正同时进行一个以上的线程,它只能把CPU运行时间划分成若干个时间段,再将时间 段分配给各个线程执行,在一个时间段的线程代码运行时,其它线程处于挂起状。.这种方式我们称之为并发(Concurrent)。

    对于我们开发的网站,如果网站的访问量非常大的话,那么我们就需要考虑相关的并发访问问题了。而并发问题是绝大部分的程序员头疼的问题,

    、同步和异步的区别和联系

       所谓同步,可以理解为在执行完一个函数或方法之后,一直等待系统返回值或消息,这时程序是出于阻塞的,只有接收到

            返回的值或消息后才往下执行其它的命令。

            异步,执行完函数或方法后,不必阻塞性地等待返回值或消息,只需要向系统委托一个异步过程,那么当系统接收到返回

            值或消息时,系统会自动触发委托的异步过程,从而完成一个完整的流程。

             同步在一定程度上可以看做是单线程,这个线程请求一个方法后就待这个方法给他回复,否则他不往下执行(死心眼)。

             同步就是一件事,一件事情一件事的做。
            异步就是,做一件事情,不引响做其他事情。异步在一定程度上可以看做是多线程的(废话,一个线程怎么叫异步),请求一个方法后,就不管了,继续执行其他的方法。

     脏数据

     脏读就是指当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交到数据库中,这时,另外一个事务也访问这个数据,然后使用了这
    个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是脏数据(Dirty Data),依据脏数据所做的操作可能是不正确的。

    不可重复读

    不可重复读是指在一个事务内,多次读同一数据。在这个事务还没有结束时,另外一个事务也访问该同一数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改,那么第一个事务两次读到的数据可能是不一样的。这样就发生了在一个事务内两次读到的数据是不一样的,因此称为是不可重复读

     2、如何处理并发和同步

            今天讲的如何处理并发和同同步问题主要是通过锁机制。

    我们需要明白,锁机制有两个层面。

           一种是代码层次上的,如java中的同步锁,典型的就是同步关键字synchronized,这里我不在做过多的讲解,

       另外一种是数据库层次上的,比较典型的就是悲观锁和乐观锁。这里我们重点讲解的就是悲观锁(传统的物理锁)和乐观锁。

    悲观锁(Pessimistic Locking):       

           悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自 外部系统的事务处理)修改持保守态度,因此,

           在整个数据处理过程中,将数据处于锁定状态。

           悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能 真正保证数据访问的排他性,否则,即使在本系统

           中实现了加锁机制,也无法保证外部系 统不会修改数据)。 

           一个典型的倚赖数据库的悲观锁调用: 

           select * from account where name=”Erica” for update

           这条 sql 语句锁定了 account 表中所有符合检索条件( name=”Erica” )的记录。

           本次事务提交之前(事务提交时会释放事务过程中的锁),外界无法修改这些记录。 
           Hibernate 的悲观锁,也是基于数据库的锁机制实现。 
           下面的代码实现了对查询记录的加锁:

           String hqlStr ="from TUser as user where user.name='Erica'";

            Query query = session.createQuery(hqlStr);

            query.setLockMode("user",LockMode.UPGRADE); // 加锁

           List userList = query.list();// 执行查询,获取数据

           query.setLockMode 对查询语句中,特定别名所对应的记录进行加锁(我们为 TUser 类指定了一个别名 “user” ),这里也就是对

          返回的所有 user 记录进行加锁。 

          观察运行期 Hibernate 生成的 SQL 语句: 
          select tuser0_.id as id, tuser0_.name as name, tuser0_.group_id
          as group_id, tuser0_.user_type as user_type, tuser0_.sex as sex
          from t_user tuser0_ where (tuser0_.name='Erica' ) for update
         这里 Hibernate 通过使用数据库的 for update 子句实现了悲观锁机制。 
          Hibernate 的加锁模式有: 
          Ø LockMode.NONE : 无锁机制。 
          Ø LockMode.WRITE : Hibernate 在 Insert 和 Update 记录的时候会自动获取
          Ø LockMode.READ : Hibernate 在读取记录的时候会自动获取。 
          以上这三种锁机制一般由 Hibernate 内部使用,如 Hibernate 为了保证 Update
          过程中对象不会被外界修改,会在 save 方法实现中自动为目标对象加上 WRITE 锁。 
          Ø LockMode.UPGRADE :利用数据库的 for update 子句加锁。 
          Ø LockMode. UPGRADE_NOWAIT : Oracle 的特定实现,利用 Oracle 的 for
          update nowait 子句实现加锁。 
          上面这两种锁机制是我们在应用层较为常用的,加锁一般通过以下方法实现: 
          Criteria.setLockMode
          Query.setLockMode
          Session.lock
          注意,只有在查询开始之前(也就是 Hiberate 生成 SQL 之前)设定加锁,才会 
          真正通过数据库的锁机制进行加锁处理,否则,数据已经通过不包含 for update
          子句的 Select SQL 加载进来,所谓数据库加锁也就无从谈起。

          为了更好的理解select... for update的锁表的过程,本人将要以mysql为例,进行相应的讲解

          1、要测试锁定的状况,可以利用MySQL的Command Mode ,开二个视窗来做测试。

       需要注意的是for update要放到mysql的事务中,即begin和commit中,否者不起作用。

    乐观锁(Optimistic Locking):        
             相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依 靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之

    而来的就是数据库 性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。 如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数

    据的基础上进 行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过 程中(从操作员读出数据、开始修改直至提交修改结果的全

    过程,甚至还包括操作 员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几 百上千个并发,这样的情况将导致怎样的后果。 乐

    观锁机制在一定程度上解决了这个问题。

             乐观锁,大多是基于数据版本   Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通

    过为数据库表增加一个 “version” 字段来 实现。 读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提 交数据的版本数据与数据

    库表对应记录的当前版本信息进行比对,如果提交的数据 版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。对于上面修改用户帐户信息

    的例子而言,假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。操作员 A 此时将其读出

    ( version=1 ),并从其帐户余额中扣除 $50( $100-$50 )。 2 在操作员 A 操作的过程中,操作员 B 也读入此用户信息( version=1 ),并 从其帐

    户余额中扣除 $20 ( $100-$20 )。 3 操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣 除后余额( balance=$50 ),提交

    至数据库更新,此时由于提交数据版本大 于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。 4 操作员 B 完成了操作,也将版本号加一

    ( version=2 )试图向数据库提交数 据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的 数据版本号为 2 ,数据库记录当前版

    本也为 2 ,不满足 “ 提交版本必须大于记 录当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。 这样,就避免了操作员 B 用基于

    version=1 的旧数据修改的结果覆盖操作 员 A 的操作结果的可能。 从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员 A


    和操作员 B 操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系 统整体性能表现。 需要注意的是,乐观锁机制往往基于系统中的数据存储

    逻辑,因此也具备一定的局 限性,如在上例中,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户 余额更新操作不受我们系统的控制,因此可能

    会造成脏数据被更新到数据库中。在 系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整(如 将乐观锁策略在数据库存储过程中实

    现,对外只开放基于此存储过程的数据更新途 径,而不是将数据库表直接对外公开)。 Hibernate 在其数据访问引擎中内置了乐观锁实现。如果不用考虑外

    部系统对数 据库的更新操作,利用 Hibernate 提供的透明化乐观锁实现,将大大提升我们的 生产力。

    一:高并发高负载类网站关注点之数据库 

    没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。
    一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(主-从)方式进行同步复制,将查询和操作和分别在不同的服务器上进行操作。我推荐的是M-M-Slaves方式,2个主Mysql,多个Slaves,需要注意的是,虽然有2个Master,但是同时只有1个是Active,我们可以在一定时候切换。之所以用2个M,是保证M不会又成为系统的SPOF。 
    Slaves可以进一步负载均衡,可以结合LVS,从而将select操作适当的平衡到不同的slaves上。 
    以上架构可以抗衡到一定量的负载,但是随着用户进一步增加,你的用户表数据超过1千万,这时那个M变成了SPOF。你不能任意扩充Slaves,否则复制同步的开销将直线上升,怎么办?我的方法是表分区,从业务层面上进行分区。最简单的,以用户数据为例。根据一定的切分方式,比如id,切分到不同的数据库集群去。 

    全局数据库用于meta数据的查询。缺点是每次查询,会增加一次,比如你要查一个用户nightsailer,你首先要到全局数据库群找到nightsailer对应的cluster id,然后再到指定的cluster找到nightsailer的实际数据。 
    每个cluster可以用m-m方式,或者m-m-slaves方式。这是一个可以扩展的结构,随着负载的增加,你可以简单的增加新的mysql cluster进去。 

    二:高并发高负载网站的系统架构之HTML静态化 

    三:高并发高负载类网站关注点之缓存、负载均衡、存储 

    缓存是另一个大问题,我一般用memcached来做缓存集群,一般来说部署10台左右就差不多(10g内存池)。需要注意一点,千万不能用使用 
    swap,最好关闭linux的swap。 


    负载均衡/加速 

    可能上面说缓存的时候,有人第一想的是页面静态化,所谓的静态html,我认为这是常识,不属于要点了。页面的静态化随之带来的是静态服务的 
    负载均衡和加速。我认为Lighttped+Squid是最好的方式了。 
    LVS <------->lighttped====>squid(s) ====lighttpd 

    上面是我经常用的。注意,我没有用apache,除非特定的需求,否则我不部署apache,因为我一般用php-fastcgi配合lighttpd, 
    性能比apache+mod_php要强很多。 

    squid的使用可以解决文件的同步等等问题,但是需要注意,你要很好的监控缓存的命中率,尽可能的提高的90%以上。 

    存储 
    存储也是一个大问题,一种是小文件的存储,比如图片这类。另一种是大文件的存储,比如搜索引擎的索引,一般单文件都超过2g以上。 
    小文件的存储最简单的方法是结合lighttpd来进行分布。或者干脆使用Redhat的GFS,优点是应用透明,缺点是费用较高。我是指 
    你购买盘阵的问题。我的项目中,存储量是2-10Tb,我采用了分布式存储。这里要解决文件的复制和冗余。 
    这样每个文件有不同的冗余,这方面可以参考google的gfs的论文。 
    大文件的存储,可以参考nutch的方案,现在已经独立为hadoop子项目。(你可以google it) 

    四:高并发高负载网站的系统架构之图片服务器分离 

    五:高并发高负载网站的系统架构之数据库集群和库表散列 

    在数据库集群方面,很多数据库都有自己的解决方案,Oracle、Sybase等都有很好的方案,常用的MySQL提供的Master/Slave也是类似的方案,您使用了什么样的DB,就参考相应的解决方案来实施即可。 

    上面提到的数据库集群由于在架构、成本、扩张性方面都会受到所采用DB类型的限制,于是我们需要从应用程序的角度来考虑改善系统架构,库表散列是常用并 且最有效的解决方案。我们在应用程序中安装业务和应用或者功能模块将数据库进行分离,不同的模块对应不同的数据库或者表,再按照一定的策略对某个页面或者 功能进行更小的数据库散列,比如用户表,按照用户ID进行表散列,这样就能够低成本的提升系统的性能并且有很好的扩展性。sohu的论坛就是采用了这样的 架构,将论坛的用户、设置、帖子等信息进行数据库分离,然后对帖子、用户按照板块和ID进行散列数据库和表,最终可以在配置文件中进行简单的配置便能让系 统随时增加一台低成本的数据库进来补充系统性能。 

    集群软件的分类: 
    一般来讲,集群软件根据侧重的方向和试图解决的问题,分为三大类:高性能集群(High performance cluster,HPC)、负载均衡集群(Load balance cluster, LBC),高可用性集群(High availability cluster,HAC)。 
    高性能集群(High performance cluster,HPC),它是利用一个集群中的多台机器共同完成同一件任务,使得完成任务的速度和可靠性都远远高于单机运行的效果。弥补了单机性能上的不足。该集群在天气预报、环境监控等数据量大,计算复杂的环境中应用比较多; 
    负载均衡集群(Load balance cluster, LBC),它是利用一个集群中的多台单机,完成许多并行的小的工作。一般情况下,如果一个应用使用的人多了,那么用户请求的响应时间就会增大,机器的性能也会受到影响,如果使用负载均衡集群,那么集群中任意一台机器都能响应用户的请求,这样集群就会在用户发出服务请求之后,选择当时负载最小,能够提供最好的服务的这台机器来接受请求并相应,这样就可用用集群来增加系统的可用性和稳定性。这类集群在网站中使用较多; 
    高可用性集群(High availability cluster,HAC),它是利用集群中系统 的冗余,当系统中某台机器发生损坏的时候,其他后备的机器可以迅速的接替它来启动服务,等待故障机的维修和返回。最大限度的保证集群中服务的可用性。这类系统一般在银行,电信服务这类对系统可靠性有高的要求的领域有着广泛的应用。

    六:高并发高负载网站的系统架构之缓存 

    最基本的两种缓存。高级和分布式的缓存在后面讲述。 
      架构方面的缓存,对Apache比较熟悉的人都能知道Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。 
       网站程序开发方面的缓存,Linux上提供的Memory Cache是常用的缓存接口,可以在web开发中使用,比如用Java开发的时候就可以调用MemoryCache对一些数据进行缓存和通讯共享,一些大 型社区使用了这样的架构。另外,在使用web语言开发的时候,各种语言基本都有自己的缓存模块和方法,PHP有Pear的Cache模块,Java就更多 了,.net不是很熟悉,相信也肯定有。 

    Java开源缓存框架 

    JBossCache/TreeCache JBossCache是一个复制的事务处理缓存,它允许你缓存企业级应用数据来更好的改善性能。缓存数据被自动复制,让你轻松进行Jboss服务器之间的集群工作。JBossCache能够通过Jboss应用服务或其他J2EE容器来运行一个Mbean服务,当然,它也能独立运行。 JBossCache包括两个模块:TreeCache和TreeCacheAOP。 TreeCache --是一个树形结构复制的事务处理缓存。 TreeCacheAOP --是一个“面向对象”缓存,它使用AOP来动态管理POJO 
    OSCache OSCache标记库由OpenSymphony设计,它是一种开创性的JSP定制标记应用,提供了在现有JSP页面之内实现快速内存缓冲的功能。OSCache是个一个广泛采用的高性能的J2EE缓存框架,OSCache能用于任何Java应用程序的普通的缓存解决方案。OSCache有以下特点:缓存任何对象,你可以不受限制的缓存部分jsp页面或HTTP请求,任何java对象都可以缓存。 拥有全面的API--OSCache API给你全面的程序来控制所有的OSCache特性。 永久缓存--缓存能随意的写入硬盘,因此允许昂贵的创建(expensive-to-create)数据来保持缓存,甚至能让应用重启。 支持集群--集群缓存数据能被单个的进行参数配置,不需要修改代码。 缓存记录的过期--你可以有最大限度的控制缓存对象的过期,包括可插入式的刷新策略(如果默认性能不需要时)。 
    JCACHE JCACHE是一种即将公布的标准规范(JSR 107),说明了一种对Java对象临时在内存中进行缓存的方法,包括对象的创建、共享访问、假脱机(spooling)、失效、各JVM的一致性等。它可被用于缓存JSP内最经常读取的数据,如产品目录和价格列表。利用JCACHE,多数查询的反应时间会因为有缓存的数据而加快(内部测试表明反应时间大约快15倍)。 
    Ehcache Ehcache出自Hibernate,在Hibernate中使用它作为数据缓存的解决方案。 
    Java Caching System JCS是Jakarta的项目Turbine的子项目。它是一个复合式的缓冲工具。可以将对象缓冲到内存、硬盘。具有缓冲对象时间过期设定。还可以通过JCS构建具有缓冲的分布式构架,以实现高性能的应用。 对于一些需要频繁访问而每访问一次都非常消耗资源的对象,可以临时存放在缓冲区中,这样可以提高服务的性能。而JCS正是一个很好的缓冲工具。缓冲工具对于读操作远远多于写操作的应用性能提高非常显著。 
    SwarmCache SwarmCache是一个简单而功能强大的分布式缓存机制。它使用IP组播来有效地在缓存的实例之间进行通信。它是快速提高集群式Web应用程序的性能的理想选择。 
    ShiftOne ShiftOne Object Cache这个Java库提供了基本的对象缓存能力。实现的策略有先进先出(FIFO),最近使用(LRU),最不常使用(LFU)。所有的策略可以最大化元素的大小,最大化其生存时间。 
    WhirlyCache Whirlycache是一个快速的、可配置的、存在于内存中的对象的缓存。它能够通过缓存对象来加快网站或应用程序的速度,否则就必须通过查询数据库或其他代价较高的处理程序来建立。 
    Jofti Jofti可对在缓存层中(支持EHCache,JBossCache和OSCache)的对象或在支持Map接口的存储结构中的对象进行索引与搜索。这个框架还为对象在索引中的增删改提供透明的功能同样也为搜索提供易于使用的查询功能。 
    cache4j cache4j是一个有简单API与实现快速的Java对象缓存。它的特性包括:在内存中进行缓存,设计用于多线程环境,两种实现:同步与阻塞,多种缓存清除策略:LFU, LRU, FIFO,可使用强引用(strong reference)与软引用(soft reference)存储对象。 
    Open Terracotta 一个JVM级的开源群集框架,提供:HTTP Session复制,分布式缓存,POJO群集,跨越群集的JVM来实现分布式应用程序协调(采用代码注入的方式,所以你不需要修改任何)。 
    sccache SHOP.COM使用的对象缓存系统。sccache是一个in-process cache和二级、共享缓存。它将缓存对象存储到磁盘上。支持关联Key,任意大小的Key和任意大小的数据。能够自动进行垃圾收集。 
    Shoal Shoal是一个基于Java可扩展的动态集群框架,能够为构建容错、可靠和可用的Java应用程序提供了基础架构支持。这个框架还可以集成到不希望绑定到特定通信协议,但需要集群和分布式系统支持的任何Java产品中。Shoal是GlassFish和JonAS应用服务器的集群引擎。 
    Simple-Spring-Memcached Simple-Spring-Memcached,它封装了对MemCached的调用,使MemCached的客户端开发变得超乎寻常的简单。

  • 相关阅读:
    oracle数据库导出与导入
    Mysql导入表信息[Err] 1067
    Golang--不定参数类型
    (转)Docker容器的重启策略及docker run的--restart选项详解
    (转)Golang--使用iota(常量计数器)
    Golang--匿名变量
    Golang--Hello World
    Ubuntu Server16.04 配置网卡
    U盘安装ubuntu 16.04 遇到 gfxboot.c32:not a COM32R image boot 的解决方法
    ipfs私链服务
  • 原文地址:https://www.cnblogs.com/huojg-21442/p/7120173.html
Copyright © 2020-2023  润新知