• POJ1485 Sumdiv


    Sumdiv
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 22680   Accepted: 5660

    Description

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

    Input

    The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

    Output

    The only line of the output will contain S modulo 9901.

    Sample Input

    2 3

    Sample Output

    15

    Hint

    2^3 = 8.
    The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
    15 modulo 9901 is 15 (that should be output).

    Source

     
    【题目大意】
      求A^B的所有约数的和
    【题解】
      把A唯一分解,不难得到答案:
       (1+p1+p1^2+……+p1^(φ1*B)) × (1+p2+p2^2+
      ……+p2^(φ2*B)) ×……× (1+pn+pn^2+……+pn^(φn*B))
      问题转化为等比数列求和,此处MOD为质数,存在逆元,但对于更一般的情况,采用分治法,复杂度多一个Log
      cal(p,k) = p^0 + p^1 + p^2 + ... + p^k
      if k&1
        cal(p,k) = (1 + p^((k + 1)/2))*cal(p, (k-1)/2)
      else
        cal(p,k) = (1 + p^(k/2)) * cal(p, k/2 - 1) + p^k
      快速幂即可
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <cstdlib>
     6 #include <cmath>
     7 
     8 const int INF = 0x3f3f3f3f;
     9 const int MAXN = 50000000 + 10;
    10 const int MOD = 9901;
    11 
    12 inline void read(int &x)
    13 {
    14     x = 0;char ch = getchar();char c = ch;
    15     while(ch > '9' || ch < '0')c = ch, ch = getchar();
    16     while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();
    17     if(c == '-')x = -x;
    18 }
    19 
    20 int a,b,cnt,xishu[5010],zhishu[5010],ans;
    21 
    22 int pow(int p, int k)
    23 {
    24     int r = 1, base = p;
    25     for(;k;k >>= 1)
    26     {
    27         if(k & 1)r = ((long long)r * base) % MOD;
    28         base = ((long long)base * base % MOD);
    29     }
    30     return r % MOD;
    31 }
    32 
    33 //求解1 + p + p^2 + p^3 + ... + p^k 
    34 int cal(int p, int k)
    35 {
    36     if(k == 0) return 1;
    37     if(k == 1) return (p + 1) % MOD;
    38     if(k & 1) return ((long long)(1 + pow(p, (k + 1)/2)) * (long long)(cal(p, (k - 1)/2))%MOD) % MOD;
    39     else return((long long)(pow(p, k/2) + 1) * (long long)(cal(p, k/2 - 1)) % MOD + pow(p, k)) % MOD;
    40 }
    41 
    42 int main()
    43 {
    44     read(a),read(b);
    45     register int nn = sqrt(a) + 1;
    46     for(register int i = 2;i <= nn && a > 1;++ i)
    47         if(a % i == 0)
    48         {
    49             zhishu[++cnt] = i;
    50             while(a % i == 0) ++ xishu[cnt], a /= i;
    51         }
    52     if(a > 1)zhishu[++cnt] = a, xishu[cnt] = 1;
    53     ans = 1;
    54     for(register int i = 1;i <= cnt;++ i)
    55     {
    56         ans *= cal(zhishu[i], xishu[i] * b);
    57         ans %= MOD;
    58     } 
    59     printf("%d", ans%MOD);
    60     return 0;
    61 }
    POJ1848 Sumdiv
  • 相关阅读:
    门禁复制
    ImportError: cannot import name 'COMMAND' from 'MySQLdb.constants'
    Python3:模块:ModuleNotFoundError No module named 'MySQLdb'
    zookeeper问题:关于Unable to read additional data from server sessionid 0x0问题的解决
    Linux内存分析free与cache清理
    X-pack结合LDAP进行权限认证
    Django2.2框架:ORM数据库操作
    Django框架:模板继承和静态文件配置
    Djiango框架:模板语法
    Django2.2.x框架:基础篇(二)
  • 原文地址:https://www.cnblogs.com/huibixiaoxing/p/7290358.html
Copyright © 2020-2023  润新知