• Python机器学习库scikit-learn实践


    用Anaconda的spyder:新建train_test.py

    #!usr/bin/env python  
    #-*- coding: utf-8 -*-  
      
    import sys  
    import os  
    import time  
    from sklearn import metrics  
    import numpy as np  
    import cPickle as pickle  
      
    reload(sys)  
    sys.setdefaultencoding('utf8')  
      
    # Multinomial Naive Bayes Classifier  
    def naive_bayes_classifier(train_x, train_y):  
        from sklearn.naive_bayes import MultinomialNB  
        model = MultinomialNB(alpha=0.01)  
        model.fit(train_x, train_y)  
        return model  
      
      
    # KNN Classifier  
    def knn_classifier(train_x, train_y):  
        from sklearn.neighbors import KNeighborsClassifier  
        model = KNeighborsClassifier()  
        model.fit(train_x, train_y)  
        return model  
      
      
    # Logistic Regression Classifier  
    def logistic_regression_classifier(train_x, train_y):  
        from sklearn.linear_model import LogisticRegression  
        model = LogisticRegression(penalty='l2')  
        model.fit(train_x, train_y)  
        return model  
      
      
    # Random Forest Classifier  
    def random_forest_classifier(train_x, train_y):  
        from sklearn.ensemble import RandomForestClassifier  
        model = RandomForestClassifier(n_estimators=8)  
        model.fit(train_x, train_y)  
        return model  
      
      
    # Decision Tree Classifier  
    def decision_tree_classifier(train_x, train_y):  
        from sklearn import tree  
        model = tree.DecisionTreeClassifier()  
        model.fit(train_x, train_y)  
        return model  
      
      
    # GBDT(Gradient Boosting Decision Tree) Classifier  
    def gradient_boosting_classifier(train_x, train_y):  
        from sklearn.ensemble import GradientBoostingClassifier  
        model = GradientBoostingClassifier(n_estimators=200)  
        model.fit(train_x, train_y)  
        return model  
      
      
    # SVM Classifier  
    def svm_classifier(train_x, train_y):  
        from sklearn.svm import SVC  
        model = SVC(kernel='rbf', probability=True)  
        model.fit(train_x, train_y)  
        return model  
      
    # SVM Classifier using cross validation  
    def svm_cross_validation(train_x, train_y):  
        from sklearn.grid_search import GridSearchCV  
        from sklearn.svm import SVC  
        model = SVC(kernel='rbf', probability=True)  
        param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}  
        grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)  
        grid_search.fit(train_x, train_y)  
        best_parameters = grid_search.best_estimator_.get_params()  
        for para, val in best_parameters.items():  
            print para, val  
        model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)  
        model.fit(train_x, train_y)  
        return model  
      
    def read_data(data_file):  
        import gzip  
        f = gzip.open(data_file, "rb")  
        train, val, test = pickle.load(f)  
        f.close()  
        train_x = train[0]  
        train_y = train[1]  
        test_x = test[0]  
        test_y = test[1]  
        return train_x, train_y, test_x, test_y  
          
    if __name__ == '__main__':  
        data_file = "mnist.pkl.gz"  
        thresh = 0.5  
        model_save_file = None  
        model_save = {}  
          
        test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'GBDT']  
        classifiers = {'NB':naive_bayes_classifier,   
                      'KNN':knn_classifier,  
                       'LR':logistic_regression_classifier,  
                       'RF':random_forest_classifier,  
                       'DT':decision_tree_classifier,  
                      'SVM':svm_classifier,  
                    'SVMCV':svm_cross_validation,  
                     'GBDT':gradient_boosting_classifier  
        }  
          
        print 'reading training and testing data...'  
        train_x, train_y, test_x, test_y = read_data(data_file)  
        num_train, num_feat = train_x.shape  
        num_test, num_feat = test_x.shape  
        is_binary_class = (len(np.unique(train_y)) == 2)  
        print '******************** Data Info *********************'  
        print '#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat)  
          
        for classifier in test_classifiers:  
            print '******************* %s ********************' % classifier  
            start_time = time.time()  
            model = classifiers[classifier](train_x, train_y)  
            print 'training took %fs!' % (time.time() - start_time)  
            predict = model.predict(test_x)  
            if model_save_file != None:  
                model_save[classifier] = model  
            if is_binary_class:  
                precision = metrics.precision_score(test_y, predict)  
                recall = metrics.recall_score(test_y, predict)  
                print 'precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)  
            accuracy = metrics.accuracy_score(test_y, predict)  
            print 'accuracy: %.2f%%' % (100 * accuracy)   
      
        if model_save_file != None:  
            pickle.dump(model_save, open(model_save_file, 'wb'))  

    结果:

    reading training and testing data...
    ******************** Data Info *********************
    #training data: 50000, #testing_data: 10000, dimension: 784
    ******************* NB ********************
    training took 0.558000s!
    accuracy: 83.69%
    ******************* KNN ********************
    training took 29.467000s!
    accuracy: 96.64%
    ******************* LR ********************
    training took 104.605000s!
    accuracy: 91.98%
    ******************* RF ********************
    training took 4.401000s!
    accuracy: 93.91%
    ******************* DT ********************
    training took 26.923000s!
    accuracy: 87.07%
    ******************* SVM ********************
    training took 3831.564000s!
    accuracy: 94.35%
    ******************* GBDT ********************

    在这个数据集中,由于数据分布的团簇性较好(如果对这个数据库了解的话,看它的t-SNE映射图就可以看出来。由于任务简单,其在deep learning界已被认为是toy dataset),因此KNN的效果不赖。GBDT是个非常不错的算法,在kaggle等大数据比赛中,状元探花榜眼之列经常能见其身影。

  • 相关阅读:
    oracle--单表查询
    oracle--本地网络配置tnsnames.ora和监听器listener.ora
    HDU1251统计难题(字典树Trie Tree好题)
    模板——字典树Trie Tree
    51nod——1277 字符串中的最大值
    KMP——hdu 3336 count the string
    KMP模板
    KMP——Game
    BFS——Weed
    DFS——Sum It Up
  • 原文地址:https://www.cnblogs.com/hudongni1/p/5361177.html
Copyright © 2020-2023  润新知