• 【华为云技术分享】漫谈LiteOS-LiteOS SDK支持RISC-V架构


    【摘要】 本文首先对RISC-V的架构做了简要的介绍,在此基础上实现了LiteOS在RISC-V架构上的适配过程的具体步骤,希望对你有所帮助。

    1 RISC-V架构简介

    RISC-V是一个基于精简指令集(RISC)原则的开源指令集架构(ISA)。

    与大多数指令集相比,RISC-V指令集可以自由地用于任何目的,允许任何人设计、制造和销售RISC-V芯片和软件而不必支付给任何公司专利费。RISC-V指令集的设计考虑了小型、快速、低功耗的现实情况来实做,但并没有对特定的微架构做过度的设计。

    RISC-V的Spec文档可以在RISC-C官网https://riscv.org/specifications/ 上下载。主要看riscv-privileged.pdf和riscv-spec.pdf。

    主要精读的内容包括:

    RV32ICM Instruction Set

    I:RV32I Base Integer Instruction Set

    C:Standard Extension for Compressed Instructions

    M:Standard Extension for Integer Multiplication and Division

    Privilege Levels

    Control and Status Registers (CSRs)

    Machine-Level ISA

    在了解通用的RV32架构之后,由于RV32是开源的ISA架构,所以实际芯片都会在此基础上做一些定制化,因此需要再读一下芯片手册,LiteOS的RISC-V架构支持使用的芯片是GD32VF103,请下载GD32VF103 的Spec进行阅览。

    2 LiteOS支持一种处理器

    RTOS支持一种新的处理器架构,最主要的修改有以下几个方面:

    1.启动汇编的适配

    2.适配系统调度汇编

    3.Tick的适配

    4.根据芯片设置系统相关参数

    5.适配中断管理模块

    6.编译链接脚本的调整

    那么,对应到LiteOS,主要修改的目录和文件是:

    LiteOS_Labiot_linkosliteosarch iscvsrc中

    los_dispatch.S

    los_hw.c

    los_hw_tick.c

    los_hwi.c

    和对应芯片target目录下的start.S启动汇编以及ld链接脚本。

    步骤如下:

    1. start.S

    A. 和RISC-V的异常中断处理密切相关,注意向量表的对齐

     1  vector_base:
     2         j _start
     3         .align     2
     4         .word     0
     5         .word     0
     6         .word     osInterrupt #eclic_msip_handler
     7         .word     0
     8         .word     0
     9         .word    0
    10         .word    osInterrupt #eclic_mtip_handler
     

    B. 设置中断,异常等的入口地址

     1 _start0800:
     2     
     3         /* Set the the NMI base to share with mtvec by setting CSR_MMISC_CTL */
     4         li t0, 0x200
     5         csrs CSR_MMISC_CTL, t0
     6     
     7         /* Intial the mtvt*/
     8         la t0, vector_base
     9         csrw CSR_MTVT, t0
    10     
    11         /* Intial the mtvt2 and enable it*/
    12         la t0, irq_entry
    13         csrw CSR_MTVT2, t0
    14         csrs CSR_MTVT2, 0x1
    15     
    16         /* Intial the CSR MTVEC for the Trap ane NMI base addr*/
    17         la t0, trap_entry
    18         csrw CSR_MTVEC, t0

    C.设置gp,sp,初始化data和bss section,然后跳转到main函数

     1 .option push
     2         .option norelax
     3         la gp, __global_pointer$
     4         .option pop
     5         la sp, _sp
     6     
     7         /* Load data section */
     8         la a0, _data_lma
     9         la a1, _data
    10         la a2, _edata
    11         bgeu a1, a2, 2f
    12     1:
    13         lw t0, (a0)
    14         sw t0, (a1)
    15         addi a0, a0, 4
    16         addi a1, a1, 4
    17         bltu a1, a2, 1b
    18     2:
    19         /* Clear bss section */
    20         la a0, __bss_start
    21         la a1, _end
    22         bgeu a0, a1, 2f
    23     1:
    24         sw zero, (a0)
    25         addi a0, a0, 4
    26         bltu a0, a1, 1b

    2. 适配系统调度汇编(los_dispatch.s),主要修改函数LOS_StartToRun、LOS_IntLock、LOS_IntUnLock、TaskSwitch等;

    任务栈的设计,在osTskStackInit中针对RISC-V的寄存器的定义,做出context的设计:

     1  pstContext->ra = (UINT32)osTaskExit;
     2     pstContext->sp = 0x02020202L;
     3     pstContext->gp = 0x03030303L;
     4     pstContext->tp = 0x04040404L;
     5     pstContext->t0 = 0x05050505L;
     6     pstContext->t1 = 0x06060606L;
     7     pstContext->t2 = 0x07070707L;
     8     pstContext->s0 = 0x08080808L;
     9     pstContext->s1 = 0x09090909L;
    10     pstContext->a0 = pstTaskCB->uwTaskID;         //a0 first argument
    11     pstContext->a1 = 0x11111111L;
    12     pstContext->a2 = 0x12121212L;
    13     pstContext->a3 = 0x13131313L;
    14     pstContext->a4 = 0x14141414L;
    15     pstContext->a5 = 0x15151515L;
    16     pstContext->a6 = 0x16161616L;
    17     pstContext->a7 = 0x17171717L;
    18     pstContext->s2 = 0x18181818L;
    19     pstContext->s3 = 0x19191919L;
    20     pstContext->s4 = 0x20202020L;
    21     pstContext->s5 = 0x21212121L;
    22     pstContext->s6 = 0x22222222L;
    23     pstContext->s7 = 0x23232323L;
    24     pstContext->s8 = 0x24242424L;
    25     pstContext->s9 = 0x25252525L;
    26     pstContext->s10 = 0x26262626L;
    27     pstContext->s11 = 0x27272727L;
    28     pstContext->t3 = 0x28282828L;
    29     pstContext->t4 = 0x29292929L;
    30     pstContext->t5 = 0x30303030L;
    31     pstContext->t6 = 0x31313131L;
    32     pstContext->mepc =(UINT32)osTaskEntry;

    LOS_IntLock的实现:

    1   LOS_IntLock:
    2         csrr    a0, mstatus
    3         li      t0, 0x08
    4         csrrc   zero, mstatus, t0
    5         ret

    LOS_IntUnLock的实现:

    1 LOS_IntUnLock:
    2         csrr    a0, mstatus
    3         li      t0, 0x08
    4         csrrs   zero, mstatus, t0
    5         ret

    TaskSwitch的实现:

     1 TaskSwitch:
     2         la      t0, g_stLosTask
     3         lw      t1, 0(t0)
     4         csrr    t2, mscratch
     5         sw      t2, 0(t1)
     6     
     7         //Clear the task running bit of pstRunTask.
     8         la      t0, g_stLosTask
     9         lw      t1, (t0)
    10         lb      t2, 0x4(t1)
    11         andi    t2, t2, OS_TASK_STATUS_NOT_RUNNING
    12         sb      t2, 0x4(t1)
    13     
    14         //copy pstNewTask into pstRunTask
    15         la      t0, g_stLosTask
    16         lw      t1, 0x4(t0)
    17         sw      t1, 0x0(t0)
    18     
    19         //set the task running bit=1
    20         lh      t2, 0x4(t1)
    21         ori     t2, t2, OS_TASK_STATUS_RUNNING
    22         sh      t2, 0x4(t1)
    23     
    24         //retireve stack pointer
    25         lw      sp, (t1)
    26     
    27         //retrieve the address at which exception happened
    28         lw      t0, 31 * 4(sp)
    29         csrw    mepc, t0
    30     
    31         li     t0, 0x1800
    32         csrs   mstatus, t0
    33     
    34         //retrieve the registers
    35         lw      ra, 0 * 4(sp)
    36     
    37         lw      t0, 4 * 4(sp)
    38         lw      t1, 5 * 4(sp)
    39         lw      t2, 6 * 4(sp)
    40         lw      s0, 7 * 4(sp)
    41         lw      s1, 8 * 4(sp)
    42         lw      a0, 9 * 4(sp)
    43         lw      a1, 10 * 4(sp)
    44         lw      a2, 11 * 4(sp)
    45         lw      a3, 12 * 4(sp)
    46         lw      a4, 13 * 4(sp)
    47         lw      a5, 14 * 4(sp)
    48         lw      a6, 15 * 4(sp)
    49         lw      a7, 16 * 4(sp)
    50         lw      s2, 17 * 4(sp)
    51         lw      s3, 18 * 4(sp)
    52         lw      s4, 19 * 4(sp)
    53         lw      s5, 20 * 4(sp)
    54         lw      s6, 21 * 4(sp)
    55         lw      s7, 22 * 4(sp)
    56         lw      s8, 23 * 4(sp)
    57         lw      s9, 24 * 4(sp)
    58         lw      s10, 25 * 4(sp)
    59         lw      s11, 26 * 4(sp)
    60         lw      t3, 27 * 4(sp)
    61         lw      t4, 28 * 4(sp)
    62         lw      t5, 29 * 4(sp)
    63         lw      t6, 30 * 4(sp)
    64     
    65         addi    sp, sp, 4 * 32
    66     
    67         mret

    3. Tick的适配

    osTickStart的启动:

    MTIMECMP和MTIME寄存器的设定,TIMER中断的使能,TIMER中断处理函数的注册

     1  LITE_OS_SEC_TEXT_INIT UINT32 osTickStart(VOID)
     2     {
     3         UINT32 uwRet;
     4     
     5         g_uwCyclesPerTick = OS_SYS_CLOCK / LOSCFG_BASE_CORE_TICK_PER_SECOND;
     6         g_ullTickCount = 0;
     7     
     8         *(UINT64 *)(TIMER_CTRL_ADDR + TIMER_MTIMECMP) = OS_SYS_CLOCK / LOSCFG_BASE_CORE_TICK_PER_SECOND / 4;
     9     
    10         *(UINT64 *)(TIMER_CTRL_ADDR + TIMER_MTIME) = 0;
    11         eclic_irq_enable(CLIC_INT_TMR, 1, 1);
    12         LOS_HwiCreate(CLIC_INT_TMR, 3, 0, eclic_mtip_handler, 0);
    13     
    14         g_bSysTickStart = TRUE;
    15     
    16         return LOS_OK;
    17     }

    4. 根据芯片设置系统相关参数(时钟频率,tick中断配置,los_config.h系统参数配置(内存池大小、信号量、队列、互斥锁,软件定时器数量等));

    根据实际开发板的资源和实际使用需求,配置target_config.h的参数和选项。

    5. 适配中断管理模块,LiteOS的中断向量表由m_pstHwiForm[OS_VECTOR_CNT]数组管理,需要根据芯片配置中断使能,重定向等;

    A.在los_hwi.c和los_hwi.h中根据实际芯片的中断向量数目和驱动做一些调整

    B.在entry.S中设计irq_entry的处理,需要注意的是需要单独在irq stack中处理中断嵌套:

     1  irq_entry: // -------------> This label will be set to MTVT2 register
     2         // Allocate the stack space
     3         
     4         SAVE_CONTEXT// Save 16 regs
     5         
     6         //------This special CSR read operation, which is actually use mcause as operand to directly store it to memory
     7         csrrwi  x0, CSR_PUSHMCAUSE, 17
     8         //------This special CSR read operation, which is actually use mepc as operand to directly store it to memory
     9         csrrwi  x0, CSR_PUSHMEPC, 18
    10         //------This special CSR read operation, which is actually use Msubm as operand to directly store it to memory
    11         csrrwi  x0, CSR_PUSHMSUBM, 19
    12         
    13         la t0, g_int_cnt
    14         lw t1, 0(t0)
    15         addi t1, t1, 1
    16         sw t1, 0(t0)
    17         li t2, 1
    18         bgtu t1,t2,service_loop
    19         
    20         csrw mscratch, sp
    21         la sp, __irq_stack_top

    service_loop:

     1 //------This special CSR read/write operation, which is actually Claim the CLIC to find its pending highest
     2         // ID, if the ID is not 0, then automatically enable the mstatus.MIE, and jump to its vector-entry-label, and
     3         // update the link register 
     4         csrrw ra, CSR_JALMNXTI, ra 
     5    
     6         //RESTORE_CONTEXT_EXCPT_X5
     7         
     8         la t0, g_int_cnt
     9         lw t1, 0(t0)
    10         addi t1, t1, -1
    11         sw t1, 0(t0)
    12         bnez t1, _rfi
    13         
    14         csrr sp, mscratch
    15         
    16         DISABLE_MIE # Disable interrupts
    17         
    18         LOAD x5,  19*REGBYTES(sp)
    19         csrw CSR_MSUBM, x5
    20         LOAD x5,  18*REGBYTES(sp)
    21         csrw CSR_MEPC, x5
    22         LOAD x5,  17*REGBYTES(sp)
    23         csrw CSR_MCAUSE, x5
    24         
    25         la t0, g_usLosTaskLock
    26         lw t1, 0(t0)
    27         bnez t1, _rfi
    28         
    29         la      t0, g_stLosTask
    30         lw      t1, 0x4(t0)
    31         lw      t2, 0x0(t0)
    32         beq  t1, t2, _rfi
    33         
    34         RESTORE_CONTEXT
    35         
    36         push_reg
    37         csrr t0, mepc
    38         sw t0, 31*4(sp)
    39         csrw mscratch, sp
    40         j TaskSwitch
    41 _rfi:
    42 
    43 RESTORE_CONTEXT
    44         // Return to regular code
    45         mret

    6. 编译链接脚本的调整

    几个关键的设置:

    irq stack内存区域:

    1  __stack_size = DEFINED(__stack_size) ? __stack_size : 2K;
    2         __irq_stack_size = DEFINED(__irq_stack_size) ? __irq_stack_size : 2K;
    3         __heap_size = DEFINED(__heap_size) ? __heap_size : 0xc00;

    gp初始值的设定:gp用于代码的优化,因为请合理选择__global_pointer的初值:

     PROVIDE( __global_pointer$ = . + 0x800);

    堆栈的设定:

     1  .stack : ALIGN(0x10)
     2     {
     3         . += __stack_size;  
     4         PROVIDE( _sp = . ); 
     5         . = ALIGN(0x10);
     6         PROVIDE( __irq_stack_bottom = . );
     7         . += __irq_stack_size;
     8         PROVIDE( __irq_stack_top = . );
     9     } >ram AT>ram 
    10     
    11     .heap : ALIGN(0x10)
    12     {
    13         PROVIDE( __los_heap_addr_start__ = . );
    14         . = __heap_size;
    15         . = __heap_size == 0 ? 0 : ORIGIN(ram) + LENGTH(ram);
    16         PROVIDE( __los_heap_addr_end__ = . );
    17         PROVIDE( _heap_end = . );
    18     } >ram AT>ram

    主要的步骤已经整体讲述了,顺利移植的主要前提条件是对RISC-V处理器架构的全面理解和LiteOS任务调度的设计,所以再次提醒精读riscv-privileged.pdf和riscv-spec.pdf的相关章节。在移植过程中,会遇到很多问题,建议使用IoT Studio的开发调试环境,方便的进行汇编级的单步调试,另外把串口驱动和printf打印调通,也是一种较重要的调试手段。

    作者:星辰27

  • 相关阅读:
    c#之静态构造函数和单例模式
    ugui之圆角矩形头像实现
    一些网站
    unity3d之实现各种滑动效果
    unity3d之切换场景不销毁物体
    unity3d之技能栏冷却
    unity3d之控制人物转向移动并播放动画
    vs常用快捷键
    构造函数的继承
    编写可维护的javascript 随笔
  • 原文地址:https://www.cnblogs.com/huaweicloud/p/12383658.html
Copyright © 2020-2023  润新知