• ArrayMap代码分析


      Java提供了HashMap,但是HashMap对于手机端而言,对内存的占用太大,所以Android提供了SparseArray和ArrayMap。二者都是基于二分查找,所以数据量大的时候,最坏效率会比HashMap慢很多。因此建议数据量在千以内比较合适。

    一、SparseArray

      SparseArray对应的key只能是int类型,它不会对key进行装箱操作。它使用了两个数组,一个保存key,一个保存value。

      SparseArray使用二分查找来找到key对应的插入位置。所以要保证mKeys数组有序。

      remove的时候不会立刻重新清理删除掉的数据,而是将对一个的数据标记为DELETE(一个Object对象)。在必要的环节调用gc清理标记为DELETE的空间。

    二、ArrayMap

      重点介绍一下ArrayMap。

      首先从ArrayMap的四个数组说起。

      • mHashes,用于保存key对应的hashCode;
      • mArray,用于保存键值对(key,value),其结构为[key1,value1,key2,value2,key3,value3,......];
      • mBaseCache,缓存,如果ArrayMap的数据量从4,增加到8,用该数组保存之前使用的mHashes和mArray,这样如果数据量再变回4的时候,可以再次使用之前的数组,不需要再次申请空间,这样节省了一定的时间;
      • mTwiceBaseCache,与mBaseCache对应,不过触发的条件是数据量从8增长到12。

       

      上面提到的数据量有8增长到12,为什么不是16?这也算是ArrayMap的一个优化的点,它不是每次增长1倍,而是使用了如下方法(mSize+(mSize>>1)),即每次增加1/2。

      有了上面的说明,读懂代码就容易多了。

      1、很多地方用到的indexOf

        这里使用了二分查找来查找对应的index

    int indexOf(Object key, int hash) {
            final int N = mSize;
    
            // Important fast case: if nothing is in here, nothing to look for.
            //数组为空,直接返回
            if (N == 0) {
                return ~0;
            }
    
            //二分查找,不细说了
            int index = ContainerHelpers.binarySearch(mHashes, N, hash);
    
            // If the hash code wasn't found, then we have no entry for this key.
            //没找到hashCode,返回index,一个负数
            if (index < 0) {
                return index;
            }
    
            // If the key at the returned index matches, that's what we want.
            //对比key值,相同则返回index
            if (key.equals(mArray[index<<1])) {
                return index;
            }
    
            // Search for a matching key after the index.
            //如果返回的index对应的key值,与传入的key值不等,则可能对应的key在index后面
            int end;
            for (end = index + 1; end < N && mHashes[end] == hash; end++) {
                if (key.equals(mArray[end << 1])) return end;
            }
    
            // Search for a matching key before the index.
            //接上句,后面没有,那一定在前面。
            for (int i = index - 1; i >= 0 && mHashes[i] == hash; i--) {
                if (key.equals(mArray[i << 1])) return i;
            }
    
            // Key not found -- return negative value indicating where a
            // new entry for this key should go.  We use the end of the
            // hash chain to reduce the number of array entries that will
            // need to be copied when inserting.
            //毛都没找到,那肯定是没有了,返回个负数
            return ~end;
        }

      2、看一下put方法

    public V put(K key, V value) {
            final int hash;
            int index;
            //key是空,则通过indexOfNull查找对应的index;如果不为空,通过indexOf查找对应的index
            if (key == null) {
                hash = 0;
                index = indexOfNull();
            } else {
                hash = key.hashCode();
                index = indexOf(key, hash);
            }
            
            //index大于或等于0,一定是之前put过相同的key,直接替换对应的value。因为mArray中不只保存了value,还保存了key。
            //其结构为[key1,value1,key2,value2,key3,value3,......]
            //所以,需要将index乘2对应key,index乘2再加1对应value
            if (index >= 0) {
                index = (index<<1) + 1;
                final V old = (V)mArray[index];
                mArray[index] = value;
                return old;
            }
    
            //取正数
            index = ~index;
            //mSize的大小,即已经保存的数据量与mHashes的长度相同了,需要扩容啦
            if (mSize >= mHashes.length) {
                //扩容后的大小,有以下几个档位,BASE_SIZE(4),BASE_SIZE的2倍(8),mSize+(mSize>>1)(比之前的数据量扩容1/2)
                final int n = mSize >= (BASE_SIZE*2) ? (mSize+(mSize>>1))
                        : (mSize >= BASE_SIZE ? (BASE_SIZE*2) : BASE_SIZE);
    
                if (DEBUG) Log.d(TAG, "put: grow from " + mHashes.length + " to " + n);
    
                final int[] ohashes = mHashes;
                final Object[] oarray = mArray;
                //扩容方法的实现
                allocArrays(n);
    
                //扩容后,需要把原来的数据拷贝到新数组中
                if (mHashes.length > 0) {
                    if (DEBUG) Log.d(TAG, "put: copy 0-" + mSize + " to 0");
                    System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length);
                    System.arraycopy(oarray, 0, mArray, 0, oarray.length);
                }
    
                //看看被废弃的数组是否还有利用价值
                //如果被废弃的数组的数据量为4或8,说明可能利用价值,以后用到的时候可以直接用。
                //如果被废弃的数据量太大,扔了算了,要不太占内存。如果浪费内存了,还费这么大劲,加了类干啥。
                freeArrays(ohashes, oarray, mSize);
            }
    
            //这次put的key对应的hashcode排序没有排在最后(index没有指示到数组结尾),因此需要移动index后面的数据
            if (index < mSize) {
                if (DEBUG) Log.d(TAG, "put: move " + index + "-" + (mSize-index)
                        + " to " + (index+1));
                System.arraycopy(mHashes, index, mHashes, index + 1, mSize - index);
                System.arraycopy(mArray, index << 1, mArray, (index + 1) << 1, (mSize - index) << 1);
            }
    
            //把数据保存到数组中。看到了吧,key和value都在mArray中;hashCode放到mHashes
            mHashes[index] = hash;
            mArray[index<<1] = key;
            mArray[(index<<1)+1] = value;
            mSize++;
            return null;
        }

      

      3、remove方法

      remove方法在某种条件下,会重新分配内存,保证分配给ArrayMap的内存在合理区间,减少对内存的占用。但是如果每次remove都重新分配空间,会浪费大量的时间。因此在此处,Android使用的是用空间换时间的方式,以避免效率低下。无论从任何角度,频繁的分配回收内存一定会耗费时间的。

      remove最终使用的是removeAt方法,此处只说明removeAt

        /**
         * Remove the key/value mapping at the given index.
         * @param index The desired index, must be between 0 and {@link #size()}-1.
         * @return Returns the value that was stored at this index.
         */
        public V removeAt(int index) {
            final Object old = mArray[(index << 1) + 1];
            //如果数据量小于等于1,说明删除该元素后,没有数组为空,清空两个数组。
            if (mSize <= 1) {
                // Now empty.
                if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to 0");
                //put中已有说明
                freeArrays(mHashes, mArray, mSize);
                mHashes = EmptyArray.INT;
                mArray = EmptyArray.OBJECT;
                mSize = 0;
            } else {
                //如果当初申请的数组最大容纳数据个数大于BASE_SIZE的2倍(8),并且现在存储的数据量只用了申请数量的1/3,
                //则需要重新分配空间,已减少对内存的占用
                if (mHashes.length > (BASE_SIZE*2) && mSize < mHashes.length/3) {
                    // Shrunk enough to reduce size of arrays.  We don't allow it to
                    // shrink smaller than (BASE_SIZE*2) to avoid flapping between
                    // that and BASE_SIZE.
                    //新数组的大小
                    final int n = mSize > (BASE_SIZE*2) ? (mSize + (mSize>>1)) : (BASE_SIZE*2);
    
                    if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to " + n);
    
                    final int[] ohashes = mHashes;
                    final Object[] oarray = mArray;
                    allocArrays(n);
    
                    mSize--;
                    //index之前的数据拷贝到新数组中
                    if (index > 0) {
                        if (DEBUG) Log.d(TAG, "remove: copy from 0-" + index + " to 0");
                        System.arraycopy(ohashes, 0, mHashes, 0, index);
                        System.arraycopy(oarray, 0, mArray, 0, index << 1);
                    }
                    //将index之后的数据拷贝到新数组中,和(index>0)的分支结合,就将index位置的数据删除了
                    if (index < mSize) {
                        if (DEBUG) Log.d(TAG, "remove: copy from " + (index+1) + "-" + mSize
                                + " to " + index);
                        System.arraycopy(ohashes, index + 1, mHashes, index, mSize - index);
                        System.arraycopy(oarray, (index + 1) << 1, mArray, index << 1,
                                (mSize - index) << 1);
                    }
                } else {
                    mSize--;
                    //将index后的数据向前移位
                    if (index < mSize) {
                        if (DEBUG) Log.d(TAG, "remove: move " + (index+1) + "-" + mSize
                                + " to " + index);
                        System.arraycopy(mHashes, index + 1, mHashes, index, mSize - index);
                        System.arraycopy(mArray, (index + 1) << 1, mArray, index << 1,
                                (mSize - index) << 1);
                    }
                    //移位后最后一个数据清空
                    mArray[mSize << 1] = null;
                    mArray[(mSize << 1) + 1] = null;
                }
            }
            return (V)old;
        }

      4、freeArrays

        put中有说明,这里就不进行概述了,直接上代码,印证上面的说法。

      private static void freeArrays(final int[] hashes, final Object[] array, final int size) {
            //已经废弃的数组个数为BASE_SIZE的2倍(8),则用mTwiceBaseCache保存废弃的数组;
            //如果个数为BASE_SIZE(4),则用mBaseCache保存废弃的数组
            if (hashes.length == (BASE_SIZE*2)) {
                synchronized (ArrayMap.class) {
                    if (mTwiceBaseCacheSize < CACHE_SIZE) {
                        //array为刚刚废弃的数组,mTwiceBaseCache如果有内容,则放入array[0]位置,
                        //在allocArrays中会从array[0]取出,放回mTwiceBaseCache
                        array[0] = mTwiceBaseCache;
                        //array[1]存放hash数组。因为array中每个元素都是Object对象,所以每个元素都可以存放数组
                        array[1] = hashes;
                        //清除index为2和之后的数据
                        for (int i=(size<<1)-1; i>=2; i--) {
                            array[i] = null;
                        }
                        mTwiceBaseCache = array;
                        mTwiceBaseCacheSize++;
                        if (DEBUG) Log.d(TAG, "Storing 2x cache " + array
                                + " now have " + mTwiceBaseCacheSize + " entries");
                    }
                }
            } else if (hashes.length == BASE_SIZE) {
                synchronized (ArrayMap.class) {
                    if (mBaseCacheSize < CACHE_SIZE) {
                        //代码的注释可以参考上面,不重复说明了
                        array[0] = mBaseCache;
                        array[1] = hashes;
                        for (int i=(size<<1)-1; i>=2; i--) {
                            array[i] = null;
                        }
                        mBaseCache = array;
                        mBaseCacheSize++;
                        if (DEBUG) Log.d(TAG, "Storing 1x cache " + array
                                + " now have " + mBaseCacheSize + " entries");
                    }
                }
            }
        }

      5、allocArrays

        算了,感觉没啥好说的,看懂了freeArrays,allocArrays自然就理解了。

        总体来说,通过新数组的个数产生3个分支,个数为BASE_SIZE(4),从mBaseCache取之前废弃的数组;BASE_SIZE的2倍(8),从mTwiceBaseCache取之前废弃的数组;其他,之前废弃的数组没有存储,因为太耗费内存,这种情况下,重新分配内存。

      6、clear和erase

        clear清空数组,如果再向数组中添加元素,需要重新申请空间;erase清除数组中的数组,空间还在。

      7、get

        主要的逻辑都在indexOf中了,剩下的代码不需要分析了,看了的都说懂(窃笑)。

  • 相关阅读:
    31、状态模式(详解版)
    33、中介者模式(详解版)
    36、备忘录模式(详解版)
    34、迭代器模式(详解版)
    30、责任链模式(职责链模式)详解
    29、命令模式(详解版)
    32、观察者模式(Observer模式)详解
    37、解释器模式(详解版)
    35、访问者模式(Visitor模式)详解
    28、策略模式(策略设计模式)详解
  • 原文地址:https://www.cnblogs.com/huanyou/p/5985303.html
Copyright © 2020-2023  润新知