1. 前言
《朴素贝叶斯算法(Naive Bayes)》,介绍了朴素贝叶斯原理。本文介绍的是朴素贝叶斯的基础实现,用来垃圾邮件分类。
2. 朴素贝叶斯基础实现
朴素贝叶斯 (naive Bayes) 法是基于贝叶斯定理与特征条件独立假设的分类的方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对于给定的输入(x),利用贝叶斯定理求出后验概率最大的输出(y),完整代码GitHub。
输入:
#垃圾邮件的内容
posting_list = [
['my', 'dog', 'has', 'flea', 'problem', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'ny', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']
]
#是否是垃圾邮件的标签
labels = [0, 1, 0, 1, 0, 1]
首先得根据上述文本建立一个词汇表,即把重复的词汇剔除。代码如下:
def createVocabList(dataSet):
'''
创建所有文档中出现的不重复词汇列表
Args:
dataSet: 所有文档
Return:
包含所有文档的不重复词列表,即词汇表
'''
vocabSet = set([])
# 创建两个集合的并集
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet)
然后需要把每句话转化为词袋模型(bag-of-words model):
# 词袋模型(bag-of-words model):词在文档中出现的次数
def bagOfWords2Vec(vocabList, inputSet):
'''
依据词汇表,将输入文本转化成词袋模型词向量
Args:
vocabList: 词汇表
inputSet: 当前输入文档
Return:
returnVec: 转换成词向量的文档
例子:
vocabList = ['I', 'love', 'python', 'and', 'machine', 'learning']
inputset = ['python', 'machine', 'learning', 'python', 'machine']
returnVec = [0, 0, 2, 0, 2, 1]
长度与词汇表一样长,出现了的位置为1,未出现为0,如果词汇表中无该单词则print
'''
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
else:
print("the word: %s is not in my vocabulary!" % word)
return returnVec
目前为止,我们把每份邮件转化成了一系列的向量形式,向量的长度是词表里面的词的个数,是稀疏矩阵。
接下去就是朴素贝叶斯的步骤了,也就是训练的过程:
def fit(self, trainMatrix, trainCategory):
'''
朴素贝叶斯分类器训练函数,求:p(Ci),基于词汇表的p(w|Ci)
Args:
trainMatrix : 训练矩阵,即向量化表示后的文档(词条集合)
trainCategory : 文档中每个词条的列表标注
Return:
p0Vect : 属于0类别的概率向量(p(w1|C0),p(w2|C0),...,p(wn|C0))
p1Vect : 属于1类别的概率向量(p(w1|C1),p(w2|C1),...,p(wn|C1))
pAbusive : 属于1类别文档的概率
'''
numTrainDocs = len(trainMatrix)
# 长度为词汇表长度
numWords = len(trainMatrix[0])
# p(ci)
self.pAbusive = sum(trainCategory) / float(numTrainDocs)
# 由于后期要计算p(w|Ci)=p(w1|Ci)*p(w2|Ci)*...*p(wn|Ci),若wj未出现,则p(wj|Ci)=0,因此p(w|Ci)=0,这样显然是不对的
# 故在初始化时,将所有词的出现数初始化为1,分母即出现词条总数初始化为2
p0Num = np.ones(numWords)
p1Num = np.ones(numWords)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# p(wi | c1)
# 为了避免下溢出(当所有的p都很小时,再相乘会得到0.0,使用log则会避免得到0.0)
self.p1Vect = np.log(p1Num / p1Denom)
# p(wi | c2)
self.p0Vect = np.log(p0Num / p0Denom)
return self
训练完了,剩下的是对新数据的预测过程:
def predict(self, testX):
'''
朴素贝叶斯分类器
Args:
testX : 待分类的文档向量(已转换成array)
p0Vect : p(w|C0)
p1Vect : p(w|C1)
pAbusive : p(C1)
Return:
1 : 为侮辱性文档 (基于当前文档的p(w|C1)*p(C1)=log(基于当前文档的p(w|C1))+log(p(C1)))
0 : 非侮辱性文档 (基于当前文档的p(w|C0)*p(C0)=log(基于当前文档的p(w|C0))+log(p(C0)))
'''
p1 = np.sum(testX * self.p1Vect) + np.log(self.pAbusive)
p0 = np.sum(testX * self.p0Vect) + np.log(1 - self.pAbusive)
if p1 > p0:
return 1
else:
return 0
3. 总结
- 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
- 对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。
- 对缺失数据不太敏感,算法也比较简单,常用于文本分类。