• spark机器学习从0到1特征提取 TF-IDF(十二)


     
     

    一、概念

    “词频-逆向文件频率”(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度。
    词语由t表示,文档由d表示,语料库由D表示。词频TF(t,d)是词语t在文档d中出现的次数。文件频率DF(t,D)是包含词语的文档的个数。如果我们只使用词频来衡量重要性,很容易过度强调在文档中经常出现,却没有太多实际信息的词语,比如“a”,“the”以及“of”。如果一个词语经常出现在语料库中,意味着它并不能很好的对文档进行区分。TF-IDF就是在数值化文档信息,衡量词语能提供多少信息以区分文档。其定义如下:

     
    IDF

    此处|D| 是语料库中总的文档数。公式中使用log函数,当词出现在所有文档中时,它的IDF值变为0。加1是为了避免分母为0的情况。TF-IDF 度量值表示如下:

     
    TF-IDF

    在Spark ML库中,TF-IDF被分成两部分:TF (+hashing) 和 IDF。

    TF: HashingTF 是一个Transformer,在文本处理中,接收词条的集合然后把这些集合转化成固定长度的特征向量。这个算法在哈希的同时会统计各个词条的词频。

    IDF: IDF是一个Estimator,在一个数据集上应用它的fit()方法,产生一个IDFModel。 该IDFModel 接收特征向量(由HashingTF产生),然后计算每一个词在文档中出现的频次。IDF会减少那些在语料库中出现频率较高的词的权重。

    Spark.mllib 中实现词频率统计使用特征hash的方式,原始特征通过hash函数,映射到一个索引值。后面只需要统计这些索引值的频率,就可以知道对应词的频率。这种方式避免设计一个全局1对1的词到索引的映射,这个映射在映射大量语料库时需要花费更长的时间。但需要注意,通过hash的方式可能会映射到同一个值的情况,即不同的原始特征通过Hash映射后是同一个值。为了降低这种情况出现的概率,我们只能对特征向量升维。i.e., 提高hash表的桶数,默认特征维度是 2^20 = 1,048,576.

    在下面的代码段中,我们以一组句子开始。首先使用分解器Tokenizer把句子划分为单个词语。对每一个句子(词袋),我们使用HashingTF将句子转换为特征向量,最后使用IDF重新调整特征向量。这种转换通常可以提高使用文本特征的性能。

    二、代码实现

    2.1、构造文档集合

    导入TFIDF所需要的包,创建一个简单的DataFrame,每一个句子代表一个文档。

    import java.util.Arrays;
    import java.util.List;
    import org.apache.spark.ml.feature.HashingTF;
    import org.apache.spark.ml.feature.IDF;
    import org.apache.spark.ml.feature.IDFModel;
    import org.apache.spark.ml.feature.Tokenizer;
    import org.apache.spark.sql.Dataset;
    import org.apache.spark.sql.Row;
    import org.apache.spark.sql.RowFactory;
    import org.apache.spark.sql.SparkSession;
    import org.apache.spark.sql.types.DataTypes;
    import org.apache.spark.sql.types.Metadata;
    import org.apache.spark.sql.types.StructField;
    import org.apache.spark.sql.types.StructType;
    
    //获取spark
    SparkSession spark = SparkSession.builder().appName("FeatureExtractors").master("local").getOrCreate();
    
    //构造数据
    List<Row> rawData = Arrays.asList(RowFactory.create(0, "I heard about Spark and I love Spark"),
            RowFactory.create(0, "I wish Java could use case classes"),
            RowFactory.create(1, "Logistic regression models are neat")
            );
    
    
    StructType schema = new StructType(new StructField[] {
            new StructField("label",DataTypes.IntegerType,false,Metadata.empty()),
            new StructField("sentence",DataTypes.StringType,false,Metadata.empty())
    });
    Dataset<Row> sentenceData = spark.createDataFrame(rawData,schema);
    sentenceData.show(false);
    

    输出结果:

    +-----+-------------------------------------+
    |label|sentence                             |
    +-----+-------------------------------------+
    |0    |I heard about Spark and I love  Spark|
    |0    |I wish Java could use case  classes  |
    |1    |Logistic regression models are  neat |
    +-----+-------------------------------------+
    
    2.2、tokenizer对句子进行分词

    得到文档集合后,即可用tokenizer对句子进行分词。

    Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words");
    Dataset<Row> wordsData = tokenizer.transform(sentenceData);
    wordsData.show(false);
    

    输出结果:

    +-----+------------------------------------+---------------------------------------------+
    |label|sentence                            |words                                        |
    +-----+------------------------------------+---------------------------------------------+
    |0    |I heard about Spark and I love Spark|[i, heard, about, spark, and, i, love, spark]|
    |0    |I wish Java could use case classes  |[i, wish, java, could, use, case, classes]   |
    |1    |Logistic regression models are neat |[logistic, regression, models, are, neat]    |
    +-----+------------------------------------+---------------------------------------------+
    
    2.3、TF把句子哈希成特征向量

    得到分词后的文档序列后,即可使用HashingTF的transform()方法把句子哈希成特征向量,这里设置哈希表的桶数为2000。

    HashingTF hashingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(2000);
    Dataset<Row> featurizedData = hashingTF.transform(wordsData);
    featurizedData.show(false);
    

    输出结果:

    +-----+------------------------------------+---------------------------------------------+---------------------------------------------------------------------+
    |label|sentence                            |words                                        |rawFeatures                                                          |
    +-----+------------------------------------+---------------------------------------------+---------------------------------------------------------------------+
    |0    |I heard about Spark and I love Spark|[i, heard, about, spark, and, i, love, spark]|(2000,[240,333,1105,1329,1357,1777],[1.0,1.0,2.0,2.0,1.0,1.0])       |
    |0    |I wish Java could use case classes  |[i, wish, java, could, use, case, classes]   |(2000,[213,342,489,495,1329,1809,1967],[1.0,1.0,1.0,1.0,1.0,1.0,1.0])|
    |1    |Logistic regression models are neat |[logistic, regression, models, are, neat]    |(2000,[286,695,1138,1193,1604],[1.0,1.0,1.0,1.0,1.0])                |
    +-----+------------------------------------+---------------------------------------------+---------------------------------------------------------------------+
    

    每一个单词被哈希成了一个不同的索引值。以”I heard about Spark and I love Spark”为例,输出结果中2000代表哈希表的桶数,“[240,333,1105,1329,1357,1777]”分别代表着“heard, about, i, spark, and, love”的哈希值,“[1.0,1.0,2.0,2.0,1.0,1.0]”为对应单词的出现次数,无序。

    2.4、IDF修正词频特征向量

    可以看到,分词序列被变换成一个稀疏特征向量,其中每个单词都被散列成了一个不同的索引值,特征向量在某一维度上的值即该词汇在文档中出现的次数。
    最后,使用IDF来对单纯的词频特征向量进行修正,使其更能体现不同词汇对文本的区别能力,IDF是一个Estimator,调用fit()方法并将词频向量传入,即产生一个IDFModel。

    IDF idf = new IDF().setInputCol("rawFeatures").setOutputCol("features");
    IDFModel idfModel = idf.fit(featurizedData);
    
    2.5、得到单词对应的TF-IDF度量值

    很显然,IDFModel是一个Transformer,调用它的transform()方法,即可得到每一个单词对应的TF-IDF度量值。

    Dataset<Row> rescaledData = idfModel.transform(featurizedData);
    rescaledData.show(false);
    

    输出结果:

    +-----+------------------------------------+---------------------------------------------+---------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    |label|sentence                            |words                                        |rawFeatures                                                          |features                                                                                                                                                                       |
    +-----+------------------------------------+---------------------------------------------+---------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    |0    |I heard about Spark and I love Spark|[i, heard, about, spark, and, i, love, spark]|(2000,[240,333,1105,1329,1357,1777],[1.0,1.0,2.0,2.0,1.0,1.0])       |(2000,[240,333,1105,1329,1357,1777],[0.6931471805599453,0.6931471805599453,1.3862943611198906,0.5753641449035617,0.6931471805599453,0.6931471805599453])                       |
    |0    |I wish Java could use case classes  |[i, wish, java, could, use, case, classes]   |(2000,[213,342,489,495,1329,1809,1967],[1.0,1.0,1.0,1.0,1.0,1.0,1.0])|(2000,[213,342,489,495,1329,1809,1967],[0.6931471805599453,0.6931471805599453,0.6931471805599453,0.6931471805599453,0.28768207245178085,0.6931471805599453,0.6931471805599453])|
    |1    |Logistic regression models are neat |[logistic, regression, models, are, neat]    |(2000,[286,695,1138,1193,1604],[1.0,1.0,1.0,1.0,1.0])                |(2000,[286,695,1138,1193,1604],[0.6931471805599453,0.6931471805599453,0.6931471805599453,0.6931471805599453,0.6931471805599453])                                               |
    +-----+------------------------------------+---------------------------------------------+---------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    
    Dataset<Row> data = rescaledData.select("features","label");
    data.show(false);
    

    输出结果:

    +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----+
    |features                                                                                                                                                                        |label|
    +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----+
    |(2000,[240,333,1105,1329,1357,1777],[0.6931471805599453,0.6931471805599453,1.3862943611198906,0.5753641449035617,0.6931471805599453,0.6931471805599453])                        |0    |
    |(2000,[213,342,489,495,1329,1809,1967],[0.6931471805599453,0.6931471805599453,0.6931471805599453,0.6931471805599453,0.28768207245178085,0.6931471805599453,0.6931471805599453]) |0    |
    |(2000,[286,695,1138,1193,1604],[0.6931471805599453,0.6931471805599453,0.6931471805599453,0.6931471805599453,0.6931471805599453])                                                |1    |
    +--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----+
    

    可以看到,特征向量已经被其在语料库中出现的总次数进行了修正,通过TF-IDF得到的特征向量,在接下来可以被应用到相关的机器学习方法中。



  • 相关阅读:
    【基础】jquery全选、反选、全不选代码
    【基础】jquery全选、反选、全不选代码
    收集一些程序员励志经典名言
    收集一些程序员励志经典名言
    收集一些程序员励志经典名言
    防止表单重复提交的解决方案整理
    Git使用教程
    2019牛客暑期多校训练营(第二场)J Subarray
    Hibernate-配置
    与项目欧拉速度比较:C vs Python与Erlang vs Haskell
  • 原文地址:https://www.cnblogs.com/huanghanyu/p/12918753.html
Copyright © 2020-2023  润新知