• [POJ 2248]Addition Chains


    Addition Chains
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5263   Accepted: 2829   Special Judge

    Description

    An addition chain for n is an integer sequence <a0, a1,a2,...,am="">with the following four properties: 
    • a0 = 1 
    • am = n 
    • a0 < a1 < a2 < ... < am-1 < am 
    • For each k (1<=k<=m) there exist two (not necessarily different) integers i and j (0<=i, j<=k-1) with ak=ai+aj

    You are given an integer n. Your job is to construct an addition chain for n with minimal length. If there is more than one such sequence, any one is acceptable. 
    For example, <1,2,3,5> and <1,2,4,5> are both valid solutions when you are asked for an addition chain for 5.

    Input

    The input will contain one or more test cases. Each test case consists of one line containing one integer n (1<=n<=100). Input is terminated by a value of zero (0) for n.

    Output

    For each test case, print one line containing the required integer sequence. Separate the numbers by one blank. 
    Hint: The problem is a little time-critical, so use proper break conditions where necessary to reduce the search space. 

    Sample Input

    5
    7
    12
    15
    77
    0
    

    Sample Output

    1 2 4 5
    1 2 4 6 7
    1 2 4 8 12
    1 2 4 5 10 15
    1 2 4 8 9 17 34 68 77

    题目大意

    请构造一个尽量短的序列 A,长度为 len,一开始会给你一个正整数 n,

    满足以下条件:

        A[1]=1

    A[len]=n

    A[i]>A[i-1]                       (len>=i>=2)

    A[x]=A[i]+A[j]           (1<=i,j<x)

    题解:

    考虑迭代加深的dfs
    我们一开始可以算出最少需要多少个,就是答案的下界
    这个怎么算呢?从1开始不断乘2,看什么时候比n大,就是下界
    然后将答案往上加,用dfs判断是否可行
    这样我们可以进行减枝了
    如果当前的答案是ans,当前搜索的位置是x
    如果 a[x]*(2^(ans-x))还比n小,就可以 return
    这样就可以搜过去了

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    int n,ans[101],depth;
    bool flag;
    void dfs(int cur)
    {
        if(flag)return;
        if(depth==cur)
        {
            if(ans[cur]==n)flag=true;
            return;
        }
        int i,j,k;
        for(i=0;i<=cur;i++)
            for(j=i;j<=cur;j++)
            if(ans[i]+ans[j]>ans[cur]&&ans[i]+ans[j]<=n)
            {
                ans[cur+1]=ans[i]+ans[j];
                int x=ans[cur+1];
                for(k=cur+1;k<=depth;k++)x*=2;
                if(x<n)continue;
                dfs(cur+1);
                if(flag)return;
            }
    }
    int main()
    {
        int i,j;
        while(scanf("%d",&n)!=EOF)
        {
            if(!n)break;
            if(n==1){printf("1
    ");continue;}
            memset(ans,0,sizeof(ans));
            flag=false;
            ans[0]=1;
            depth=0;
            int x=1;
            while(1)
            {
                x*=2;
                depth++;
                if(x>=n)break;
            }
            while(1)
            {
                dfs(0);
                if(flag)break;
                depth++;
            }
            for(i=0;i<=depth;i++)
            printf("%d ",ans[i]);
            printf("
    ");
        }
        return 0;
    }
  • 相关阅读:
    Oracle11g备份与恢复-手工备份与恢复
    undo段及区的状态和使用
    图解一个事务操作流程
    Oracle11g备份与恢复
    undo表空间概述-1
    事务的隔离级别
    事务概述
    系统改变号(SCN)详解
    实例崩溃恢复原理--检查点队列的作用
    Oracle-检查点队列
  • 原文地址:https://www.cnblogs.com/huangdalaofighting/p/7353763.html
Copyright © 2020-2023  润新知