Recently, TeaTree acquire new knoledge gcd (Greatest Common Divisor), now she want to test you.
As we know, TeaTree is a tree and her root is node 1, she have n nodes and n-1 edge, for each node i, it has it’s value v[i].
For every two nodes i and j (i is not equal to j), they will tell their Lowest Common Ancestors (LCA) a number : gcd(v[i],v[j]).
For each node, you have to calculate the max number that it heard. some definition:
In graph theory and computer science, the lowest common ancestor (LCA) of two nodes u and v in a tree is the lowest (deepest) node that has both u and v as descendants, where we define each node to be a descendant of itself.
As we know, TeaTree is a tree and her root is node 1, she have n nodes and n-1 edge, for each node i, it has it’s value v[i].
For every two nodes i and j (i is not equal to j), they will tell their Lowest Common Ancestors (LCA) a number : gcd(v[i],v[j]).
For each node, you have to calculate the max number that it heard. some definition:
In graph theory and computer science, the lowest common ancestor (LCA) of two nodes u and v in a tree is the lowest (deepest) node that has both u and v as descendants, where we define each node to be a descendant of itself.
InputOn the first line, there is a positive integer n, which describe the number of nodes.
Next line there are n-1 positive integers f[2] ,f[3], …, f[n], f[i] describe the father of node i on tree.
Next line there are n positive integers v[2] ,v[3], …, v[n], v[i] describe the value of node i.
n<=100000, f[i]<i, v[i]<=100000OutputYour output should include n lines, for i-th line, output the max number that node i heard.
For the nodes who heard nothing, output -1.Sample Input
4 1 1 3 4 1 6 9
Sample Output
2 -1 3 -1
题意:对于每个点,求以它为LCA的最大GCD。
思路:求出每个点的子树的 因子线段树,然后暴力合并,3000ms过了,(没有启发式,就是裸的合并,我也不知道复杂度怎么算的)。
不过好像可以启发式(我尝试了下用size来排序后合并,时间上并没有优化,所以不知所措); 以及bitset两种方式来优化。占位。
#include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;i++) using namespace std; const int maxn=100010; struct in{ int l,r,Max; }s[maxn*400]; vector<int>G[maxn],P[maxn]; //图,因子 int rt[maxn],ans[maxn],a[maxn],cnt; void prepare() { for(int i=1;i<maxn;i++) for(int j=i;j<maxn;j+=i) P[j].push_back(i); } void update(int &Now,int L,int R,int val) { if(!Now) Now=++cnt; if(L==R){ s[Now].Max=val; return ;} int Mid=(L+R)>>1; if(val<=Mid) update(s[Now].l,L,Mid,val); else update(s[Now].r,Mid+1,R,val); s[Now].Max=max(s[s[Now].l].Max,s[s[Now].r].Max); } int merrge(int u,int v,int &ans) { if(!u||!v) return u|v; if(s[u].Max==s[v].Max) ans=max(ans,s[u].Max); if(s[u].l||s[v].l) s[u].l=merrge(s[u].l,s[v].l,ans); if(s[u].r||s[v].r) s[u].r=merrge(s[u].r,s[v].r,ans); return u; } void dfs(int u) { for(int i=0,L=G[u].size();i<L;i++){ dfs(G[u][i]); merrge(rt[u],rt[G[u][i]],ans[u]); } } int main() { prepare(); int N,x,mx=0; scanf("%d",&N); rep(i,1,N) ans[i]=-1; rep(i,2,N) scanf("%d",&x),G[x].push_back(i); rep(i,1,N) scanf("%d",&a[i]),mx=max(mx,a[i]); rep(i,1,N) { for(int j=0,L=P[a[i]].size();j<L;j++) update(rt[i],1,mx,P[a[i]][j]); } dfs(1); rep(i,1,N) printf("%d ",ans[i]); return 0; }