InputThe first line of the input is a single integer T (T=5)T (T=5), indicating the number of testcases.
For each testcase, the first line contains one integer nn. The second line contains nnnon-negative integers, which mean the length of every section. If we denote the total length of all the sections as ss, we can guarantee that 0≤s≤500000≤s≤50000 and 1≤n≤1000001≤n≤100000.
OutputFor each testcase, print s+1s+1 lines. The single number in the ii-th line indicates the total pleasure JRY can get if he races all the ways of length i−1i−1.
Sample Input
2 3 1 2 3 4 0 1 2 3
Sample Output
0 1 1 3 0 2 3 1 3 1 6 0 2 7
题意:总区间中有n个数(n<=100000),求每种区间和,累加出所对应的区间长度(j-i+1)和;
思路:可以通过母函数得到方程,然后FFT求。 也有一种暴力一点的方式,分治+FFT:即求跨过每个点的区间的贡献。 然后两次FFT分别算出左边和右边的贡献。
(4900ms卡过去了。要用long double。
母函数的方法可以看:https://blog.csdn.net/kyleyoung_ymj/article/details/51712329
#include<bits/stdc++.h> #define ll long long #define double long double #define rep(i,x,y) for(int i=x;i<=y;i++) #define rep2(i,x,y) for(int i=x;i>=y;i--) using namespace std; const int maxn=500010; const double pi=acos(-1.0); struct cp { double r,i; cp(){} cp(double rr,double ii):r(rr),i(ii){} cp operator +(const cp&x)const{return cp(r+x.r,i+x.i);} cp operator -(const cp&x)const{return cp(r-x.r,i-x.i);} cp operator *(const cp&x)const{return cp(r*x.r-i*x.i,i*x.r+r*x.i);} }; ll ans[maxn];int s[maxn],sum[maxn],R[maxn],n; cp a[maxn],b[maxn],W,w,p; void read(int &x){ x=0; char c=getchar(); while(c>'9'||c<'0') c=getchar(); while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar(); } inline void fft(cp*c,int t) { int i,j,k; for(i=0;i<n;i++) R[i]<i?swap(c[R[i]],c[i]),0:0; for(i=1;i<n;i<<=1) for(j=0,W={cos(pi/i),sin(pi/i)*t};j<n;j+=i<<1) for(k=0,w={1,0};k<i;k++,w=w*W) p=c[j+k+i]*w,c[j+k+i]=c[j+k]-p,c[j+k]=c[j+k]+p; } void solve(int l,int r) { if(l==r){ ans[s[l]]++; return ;} int mid=(l+r)>>1 ,delta=sum[r]-sum[l-1]; solve(l,mid); solve(mid+1,r); for(n=1;(n-1)<=delta;n<<=1); rep(i,1,n-1) R[i]=R[i>>1]>>1|(i&1?n>>1:0); rep2(i,mid,l) a[sum[mid]-sum[i-1]].r+=mid-i+1; rep(i,mid+1,r) ++b[sum[i]-sum[mid]].r; fft(a,1); fft(b,1); rep(i,0,n-1) a[i]=a[i]*b[i]; fft(a,-1); rep(i,0,delta) ans[i]+=(ll)((a[i].r)/n+0.5); rep(i,0,n) a[i]=b[i]=cp(0.,0.); rep2(i,mid,l) ++a[sum[mid]-sum[i-1]].r; rep(i,mid+1,r) b[sum[i]-sum[mid]].r+=i-mid; fft(a,1); fft(b,1); rep(i,0,n-1) a[i]=a[i]*b[i]; fft(a,-1); rep(i,0,delta) ans[i]+=(ll)((a[i].r)/n+0.5); rep(i,0,n) a[i]=b[i]=cp(0.,0.); } int main() { int N,T; scanf("%d",&T); while(T--){ read(N); rep(i,1,N) read(s[i]),sum[i]=sum[i-1]+s[i]; rep(i,0,sum[N]) ans[i]=0; solve(1,N); rep(i,0,sum[N]) printf("%lld ",ans[i]); } return 0; }