• HDU


    JRY wants to drag racing along a long road. There are nn sections on the road, the ii-th section has a non-negative integer length sisi. JRY will choose some continuous sections to race (at an unbelievable speed), so there are totally n(n+1)2n(n+1)2 different ways for him to ride. If JRY rides across from the ii-th section to the jj-th section, he would gain ji+1j−i+1 pleasure. Now JRY wants to know, if he tries all the ways whose length is ss, what's the total pleasure he can get. Please be aware that in the problem, the length of one section could be zero, which means that the length is so trivial that we can regard it as 00.

    InputThe first line of the input is a single integer T (T=5)T (T=5), indicating the number of testcases. 

    For each testcase, the first line contains one integer nn. The second line contains nnnon-negative integers, which mean the length of every section. If we denote the total length of all the sections as ss, we can guarantee that 0s500000≤s≤50000 and 1n1000001≤n≤100000. 
    OutputFor each testcase, print s+1s+1 lines. The single number in the ii-th line indicates the total pleasure JRY can get if he races all the ways of length i1i−1. 
    Sample Input

    2
    3
    1 2 3
    4
    0 1 2 3

    Sample Output

    0
    1
    1
    3
    0
    2
    3
    1
    3
    1
    6
    0
    2
    7

    题意:总区间中有n个数(n<=100000),求每种区间和,累加出所对应的区间长度(j-i+1)和;

    思路:可以通过母函数得到方程,然后FFT求。 也有一种暴力一点的方式,分治+FFT:即求跨过每个点的区间的贡献。 然后两次FFT分别算出左边和右边的贡献。

    (4900ms卡过去了。要用long double。

    母函数的方法可以看:https://blog.csdn.net/kyleyoung_ymj/article/details/51712329

    #include<bits/stdc++.h>
    #define ll long long
    #define double long double
    #define rep(i,x,y) for(int i=x;i<=y;i++)
    #define rep2(i,x,y) for(int i=x;i>=y;i--)
    using namespace std;
    const int maxn=500010;
    const double pi=acos(-1.0);
    struct cp
    {
        double r,i;
        cp(){}
        cp(double rr,double ii):r(rr),i(ii){}
        cp operator +(const cp&x)const{return cp(r+x.r,i+x.i);}
        cp operator -(const cp&x)const{return cp(r-x.r,i-x.i);}
        cp operator *(const cp&x)const{return cp(r*x.r-i*x.i,i*x.r+r*x.i);}
    };
    ll ans[maxn];int s[maxn],sum[maxn],R[maxn],n;
    cp a[maxn],b[maxn],W,w,p;
    void read(int &x){
        x=0; char c=getchar();
        while(c>'9'||c<'0') c=getchar();
        while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
    }
    inline void fft(cp*c,int t)
    {
        int i,j,k;
        for(i=0;i<n;i++) R[i]<i?swap(c[R[i]],c[i]),0:0;
        for(i=1;i<n;i<<=1)
         for(j=0,W={cos(pi/i),sin(pi/i)*t};j<n;j+=i<<1)
          for(k=0,w={1,0};k<i;k++,w=w*W)
           p=c[j+k+i]*w,c[j+k+i]=c[j+k]-p,c[j+k]=c[j+k]+p;
    }
    void solve(int l,int r)
    {
        if(l==r){ ans[s[l]]++; return ;}
        int mid=(l+r)>>1 ,delta=sum[r]-sum[l-1];
        solve(l,mid); solve(mid+1,r);
        for(n=1;(n-1)<=delta;n<<=1);
        rep(i,1,n-1) R[i]=R[i>>1]>>1|(i&1?n>>1:0);
    
        rep2(i,mid,l) a[sum[mid]-sum[i-1]].r+=mid-i+1;
        rep(i,mid+1,r) ++b[sum[i]-sum[mid]].r;
        fft(a,1); fft(b,1);
        rep(i,0,n-1) a[i]=a[i]*b[i];
        fft(a,-1);
        rep(i,0,delta) ans[i]+=(ll)((a[i].r)/n+0.5);
        rep(i,0,n) a[i]=b[i]=cp(0.,0.);
    
        rep2(i,mid,l) ++a[sum[mid]-sum[i-1]].r;
        rep(i,mid+1,r) b[sum[i]-sum[mid]].r+=i-mid;
        fft(a,1); fft(b,1);
        rep(i,0,n-1) a[i]=a[i]*b[i];
        fft(a,-1);
        rep(i,0,delta) ans[i]+=(ll)((a[i].r)/n+0.5);
        rep(i,0,n) a[i]=b[i]=cp(0.,0.);
    }
    int main()
    {
        int N,T;
        scanf("%d",&T);
        while(T--){
            read(N);
            rep(i,1,N) read(s[i]),sum[i]=sum[i-1]+s[i];
            rep(i,0,sum[N]) ans[i]=0;
            solve(1,N);
            rep(i,0,sum[N]) printf("%lld
    ",ans[i]);
        }
        return 0;
    }
  • 相关阅读:
    前端部分框架
    Postman
    java intellij 写控制台程序 窗口程序
    postgresql 连接数
    CPU制造工艺 级选来决定cpu等级
    CPU 材料学才是最顶级的学科
    关于asp.net和iis的进程/线程问题,假如网站有1000个人访问,会产生多少个进程/线程啊
    io会消耗cpu吗?
    数据密集型 和 cpu密集型 event loop
    Javascript是一个事件驱动语言
  • 原文地址:https://www.cnblogs.com/hua-dong/p/9667451.html
Copyright © 2020-2023  润新知