Suppose the shell necklace is a sequence of shells (not a chain end to end). Considering i continuous shells in the shell necklace, I know that there exist different schemes to decorate the i shells together with one declaration of love.
I want to decorate all the shells with some declarations of love and decorate each shell just one time. As a problem, I want to know the total number of schemes.
InputThere are multiple test cases(no more than 2020 cases and no more than 1 in extreme case), ended by 0.
For each test cases, the first line contains an integer nn, meaning the number of shells in this shell necklace, where 1≤n≤1051≤n≤105. Following line is a sequence with nnnon-negative integer a1,a2,…,ana1,a2,…,an, and ai≤107ai≤107 meaning the number of schemes to decorate ii continuous shells together with a declaration of love.
OutputFor each test case, print one line containing the total number of schemes module 313313(Three hundred and thirteen implies the march 13th, a special and purposeful day).Sample Input
3 1 3 7 4 2 2 2 2 0
Sample Output
14 54
Hint
For the first test case in Sample Input, the Figure 1 provides all schemes about it. The total number of schemes is 1 + 3 + 3 + 7 = 14.
见:https://blog.csdn.net/Maxwei_wzj/article/details/79850756
题意:一串项链是n个珠子组成,如果i个珠子连续,可以被认为是模式i,贡献是ai一串项链是n个珠子组成,如果i个珠子连续,可以被认为是 模式i,贡献是ai
思路:对于一串珠子,列出DP方程,dp[i]表示长度为i的项链,所有情况的贡献和 dp[i]=∑ dp[j]*A[i-j],复杂度O(N^2)。
观察这个式子很像卷积的形式,于是可以用cdq分治+FFT来优化一波观察这个式子很像卷积的形式,于是可以用cdq分治+FFT来优化一波 。
(正确性不难证明,因为分治到Mid+1之前,dp[1]-dp[Mid]的值都已经求出来了。
#include<bits/stdc++.h> #define ll long long #define rep(i,a,b) for(int i=a;i<=b;i++) using namespace std; const int maxn=100010; const int Mod=313; const double pi=acos(-1.0); struct cp { double r,i; cp(){} cp(double rr,double ii):r(rr),i(ii){} cp operator +(const cp&x)const{return cp(r+x.r,i+x.i);} cp operator -(const cp&x)const{return cp(r-x.r,i-x.i);} cp operator *(const cp&x)const{return cp(r*x.r-i*x.i,i*x.r+r*x.i);} }; ll dp[maxn],A[maxn]; cp a[maxn<<2],b[maxn<<2],W,w,p; int R[maxn<<2],n; inline void fft(cp*c,int t) { int i,j,k; for(i=0;i<n;i++) R[i]<i?swap(c[R[i]],c[i]),0:0; for(i=1;i<n;i<<=1) for(j=0,W={cos(pi/i),sin(pi/i)*t};j<n;j+=i<<1) for(k=0,w={1,0};k<i;k++,w=w*W) p=c[j+k+i]*w,c[j+k+i]=c[j+k]-p,c[j+k]=c[j+k]+p; } void solve(int l,int r) { if(l==r) return ; int mid=(l+r)>>1 ; solve(l,mid); for(n=1;n<((r-l+1));n<<=1); rep(i,1,n-1) R[i]=R[i>>1]>>1|(i&1?n>>1:0); rep(i,0,mid-l) a[i]=cp(dp[l+i],0.); rep(i,mid-l+1,n) a[i]=cp(0,0); rep(i,0,r-l-1) b[i]=cp(A[i+1],0.); rep(i,r-l,n) b[i]=cp(0,0); fft(a,1); fft(b,1); rep(i,0,n-1) a[i]=a[i]*b[i]; fft(a,-1); rep(i,mid+1,r) dp[i]+=a[i-l-1].r/n+0.5,dp[i]%=Mod; solve(mid+1,r); } int main() { int N; while(~scanf("%d",&N)&&N>0){ rep(i,1,N) dp[i]=0; dp[0]=1; rep(i,1,N) scanf("%d",&A[i]),A[i]%=Mod; solve(0,N); printf("%d ",dp[N]); } return 0; }