• HDU3579Hello Kiki(中国剩余定理)(不互质的情况)


    One day I was shopping in the supermarket. There was a cashier counting coins seriously when a little kid running and singing "门前大桥下游过一群鸭,快来快来 数一数,二四六七八". And then the cashier put the counted coins back morosely and count again... 
    Hello Kiki is such a lovely girl that she loves doing counting in a different way. For example, when she is counting X coins, she count them N times. Each time she divide the coins into several same sized groups and write down the group size Mi and the number of the remaining coins Ai on her note. 
    One day Kiki's father found her note and he wanted to know how much coins Kiki was counting.

    InputThe first line is T indicating the number of test cases. 
    Each case contains N on the first line, Mi(1 <= i <= N) on the second line, and corresponding Ai(1 <= i <= N) on the third line. 
    All numbers in the input and output are integers. 
    1 <= T <= 100, 1 <= N <= 6, 1 <= Mi <= 50, 0 <= Ai < MiOutputFor each case output the least positive integer X which Kiki was counting in the sample output format. If there is no solution then output -1. 
    Sample Input

    2
    2
    14 57
    5 56
    5
    19 54 40 24 80
    11 2 36 20 76

    Sample Output

    Case 1: 341
    Case 2: 5996

    题意:

    把硬币mi mi个分,余下ai个。现在小kiki的baba想知道小kiki收集了多少硬币;

    由于取余的时候并没有说Mod之间互质,所以不能用剩余定理。要用一次线性同余方程组来解决。

    第一次做,抄的别人的。。。。数学太渣。

    #include<cstdio>
    #include<string>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    #include<algorithm>
    #include<map>
    #include<vector>
    #define LL long long
    using namespace std;
    LL m[10],r[10];
    void ex_gcd(LL a,LL b,LL &d,LL &x,LL &y)
    {
        if(b==0){ x=1;y=0;d=a;return ;}
        ex_gcd(b,a%b,d,y,x);  y-=x*(a/b);
    }
    LL gcd(LL a,LL b)
    {
        return b==0?a:gcd(b,a%b);
    }
    LL ex_CRT(int n)
    {
        LL a,b,c,c1,c2,x,y,d,N;
        a=m[1];  c1=r[1];
        for(int i=2;i<=n;i++){
            b=m[i];c2=r[i]; c=c2-c1;
            ex_gcd(a,b,d,x,y);
            if(c%d)  return -1;
            LL b1=b/d;
            x=((c/d*x)%b1+b1)%b1;
            c1=a*x+c1; a=a*b1;
        }
        if(c1==0){
            c1=1; for(int i=1;i<=n;i++) c1=c1*m[i]/gcd(c1,m[i]);
        }
        return c1;
    }
    int main()
    {
        int T,n,Case=0;
        scanf("%d",&T);
        while(T--){
            scanf("%d",&n);
            for(int i=1;i<=n;i++)  scanf("%lld",&m[i]);
            for(int i=1;i<=n;i++)  scanf("%lld",&r[i]);
            printf("Case %d: %lld
    ",++Case,ex_CRT(n));
        }
        return 0;
    }
  • 相关阅读:
    Redis实现分布式锁
    Redis数据结构
    Mysql与redis缓存一致性
    mysql分库分表
    mysql主从同步
    mysql配置优化
    Netty 参数优化
    JAVA多线程之park & unpack
    网络时钟服务器(网络校时服务器)无法同步的排查方法
    GPS北斗共视授时中的多径效应分析
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8047756.html
Copyright © 2020-2023  润新知