• POJ2151Check the difficulty of problems (概率DP)


    Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms: 
    1. All of the teams solve at least one problem. 
    2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems. 

    Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem. 

    Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems? 

    Input

    The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

    Output

    For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

    Sample Input

    2 2 2
    0.9 0.9
    1 0.9
    0 0 0
    

    Sample Output

    0.972

    题意:

    一套题,有T个题,M个人应考,已知每个人做来某题的概率。问X的概率。X满足,每个考生至少做来一道题。至少有一人做的题不少于N道。

    思路:

    不算是很典型的概率DP,更像是一道简单数学题。

    可以把所有考生都至少做来一道题的概率减去 每个人都做来1到n-1道题的概率。

    p=[(1-x11)*(1-x12)(..) ] * [(1-x21)*(1-x22)(..)]*[...]     -    [...]*[...] ,这样的话,用组合数就ok了。

    但是这里是用的DP是思路,先把考生与考题的关系求出来,p[i][j][k] 表示第i个考试前j个题会做k道的概率。再根据题意进行DP。

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    using namespace std;
    double p[1010][32][32],P1,P2,a[1010][32],tmp,res;
    int main()
    {
        int i,j,k,m,n,t;
        while(~scanf("%d%d%d",&m,&t,&n)){//t人 m题 
            if(m==0&&t==0&&n==0) return 0;
            memset(p,0,sizeof(p));
            for(i=1;i<=t;i++)
             for(j=1;j<=m;j++)
               scanf("%lf",&a[i][j]);
            for(i=1;i<=t;i++)
             for(j=0;j<=m;j++)
              for(k=0;k<=j;k++){
                   if(j==0&&k==0) p[i][j][k]=1;
                   else if(j==k)  p[i][j][k]=p[i][j-1][k-1]*a[i][j];
                   else if(k==0)  p[i][j][k]=p[i][j-1][k]*(1-a[i][j]);
                   else p[i][j][k]=p[i][j-1][k-1]*a[i][j]+p[i][j-1][k]*(1-a[i][j]);
              }
            res=1;P1=1;
            for(i=1;i<=t;i++){
                P1*=(1-p[i][m][0]);
                tmp=0;
                for(j=1;j<n;j++) tmp+=p[i][m][j]; 
                res*=tmp;    
            }
            res=P1-res;
            printf("%.3f
    ",res); //lf就出错,poj经常这样 
        }  return 0;
    }
  • 相关阅读:
    WIN7 系统 右键计算机 点击管理 出现对话框:找不到文件。
    电脑优化的方法
    小问题总结
    sql server常用函数、常用语句
    java绝对路径和相对路径的理解
    日常开发常用网站(持续更新……)
    jquery字符串序列化方法总结
    J2EE保留小数问题
    error C2556: 'const char &MyString::operator [](int)' : overloaded function differs only by return type from 'char &MyString::operator [](int)'
    有个人愿意对你微笑,如果她的眼神是坚定的,她是谁对我其实已经不重要了
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8044969.html
Copyright © 2020-2023  润新知