• 【转】数论板子


    twh大神:

    bool
    issqr(__int128_t x)//开方 { __int128_t y=(__int128_t)ceil(sqrt((long double)x)); for(;y*y<=x;++y); for(--y;y*y>x;--y); return y*y==x; } bool iscub(__int128_t x)//三次方 { __int128_t y=(__int128_t)ceil(pow((long double)x,1.0/3)); for(;y*y*y<=x;++y); for(--y;y*y*y>x;--y); return y*y*y==x; }
    int tot,pr[maxx],vis[maxx];
    void init()//素数表  O(n)
    {
        for(int i=2;i<maxx;i++)
        {
            if(!vis[i])pr[tot++]=i;
            for(int j=0;j<tot&&i*pr[j]<maxx;j++)
            {
                vis[i*pr[j]]=1;
                if(i%pr[j]==0)break;
            }
        }
    } 
    int d[maxx],pr[maxx],tot;
    void init()
    {
        for(int i = 2; i < maxx; ++i)
        {
            if(!d[i])
                pr[tot++] = d[i] = i;
            for(int j = 0, k; (k = i * pr[j]) < maxx; ++j)
            {
                d[k] = pr[j];
                if(d[i] == pr[j])
                    break;
            }
        }
    }
    const int s=10;//Miller-Rabin
    inline LL mul_mod(LL a, LL b, LL m)  O(n^(1/4))
    {
        LL c = a*b-(LL)((long double)a*b/m+0.5)*m;
        return c<0 ? c+m : c;
    }
    
    LL fast_exp(LL a,LL x,LL m)
    {
        LL b = 1;
        while (x)
        {
            if (x & 1)
                b = mul_mod(b, a, m);
            a = mul_mod(a, a, m);
            x >>= 1;
        }
        return b;
    }
    
    bool MR(LL n)
    {
        if (!(n&1))
            return n == 2;
        LL t = 0, u;
        for (u = n-1; !(u&1); u >>= 1)
            ++t;
        for (int i = 0; i < s; ++i)
        {
            LL a = rand()%(n-2)+2, x = fast_exp(a, u, n);
            for (LL j = 0, y; x != 1 && j < t; ++j, x = y)
            {
                y = mul_mod(x, x, n);
                if (y == 1 && x != n-1)
                    return false;
            }
            if (x != 1)
                return false;
        }
        return true;
    }

    Miller-Rabin Pollard-rho

    (输入一个数n,输出小于n且与n互素的整数个数)

    (大数欧拉,启发式分解)

    #include <cstdio>
    #include <cstdlib>
    #include <ctime>
    #include <algorithm>
    typedef long long ll;
    const int s = 10, MAX_F = 70;
    ll cnt, f[MAX_F];
    
    inline ll mul_mod(ll a, ll b, ll m)
    {
        ll c = a*b-(ll)((long double)a*b/m+0.5)*m;
        return c<0 ? c+m : c;
    }
    
    ll fast_exp(ll a, ll x, ll m)
    {
        ll b = 1;
        while (x)
        {
            if (x & 1)
                b = mul_mod(b, a, m);
            a = mul_mod(a, a, m);
            x >>= 1;
        }
        return b;
    }
    
    bool MR(ll n)
    {
        if (!(n&1))
            return n == 2;
        ll t = 0, u;
        for (u = n-1; !(u&1); u >>= 1)
            ++t;
        for (int i = 0; i < s; ++i)
        {
            ll a = rand()%(n-2)+2, x = fast_exp(a, u, n);
            for (ll j = 0, y; x != 1 && j < t; ++j, x = y)
            {
                y = mul_mod(x, x, n);
                if (y == 1 && x != n-1)
                    return false;
            }
            if (x != 1)
                return false;
        }
        return true;
    }
    
    inline ll abs(ll x)
    {
        return x<0 ? -x : x;
    }
    
    ll gcd(ll a, ll b)
    {
        return b ? gcd(b, a%b) : a;
    }
    
    ll PR(ll n, ll a)
    {
        ll x = rand()%n, y = x, k = 1, i = 0, d = 1;
        while (d == 1)
        {
            if ((x = (mul_mod(x, x, n)+a)%n) == y)
                return n;
            d = gcd(n, abs(y-x));
            if (++i == k)
            {
                k <<= 1;
                y = x;
            }
        }
        return d;
    }
    
    void decomp(ll n)
    {
        if (n == 1)
            return;
        if (MR(n))
        {
            f[cnt++] = n;
            return;
        }
        ll d = n, c = n-1;
        while (d == n)
            d = PR(n, c--);
        do
        {
            n /= d;
        }
        while (!(n%d));
        decomp(d);
        decomp(n);
    }
    
    int main()
    {
        srand(time(0));
        ll n;
        while (scanf("%lld", &n), n)
        {
            cnt = 0;
            decomp(n);
            std::sort(f, f+cnt);
            cnt = std::unique(f, f+cnt)-f;
            ll ans = n;
            for (int i = 0; i < cnt; ++i)
            {
                // printf("%lld
    ", f[i]);
                ans = ans/f[i]*(f[i]-1);
            }
            printf("%lld
    ", ans);
        }
        return 0;
    }
    int _pow(LL a,LL n)  
    {  
        LL ret=1;  
        while(n)  
        {  
            if(n&1)  ret=ret*a%mod;  
            a=a*a%mod;  
            n>>=1;  
        }  
        return ret;  
    }  
    int inv(int x)  
    {  
        return _pow(x,mod-2);  
    }  

    拓展gcd

    void exgcd(ll a,ll b,ll &g,ll &x,ll &y)
    {
        if(!b) {g=a;x=1;y=0;}
        else {exgcd(b,a%b,g,y,x);y-=x*(a/b);}
    }
    void work(ll a , ll b , ll d ,ll& g , ll& x , ll& y)
    {
        exgcd(a,b,g,x,y);      //此处的x,y接收 ax+by=gcd(a,b)的值
        x *= d/g;             //求ax+by=c 的解x
        int t = b/g;
        x = (x%t + t) % t;
        y = abs( (a*x - d) / b);
    }
    ll a,b,g,x,y,d;
    void solve()
    {
        S_3(a,b,d);
        work(a,b,d,g,x,y);
       /* if(x==0)
        {
            for(int i=1;x<=0;i++)
            {
                x=x+b/g*i;
                y=y-a/g*i;
            }
        }*/
    }

    逆元

    void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d)  
    {  
        if (!b) {d = a, x = 1, y = 0;}  
        else{  
            ex_gcd(b, a % b, y, x, d);  
            y -= x * (a / b);  
        }  
    }  
    LL inv2(LL t, LL p)  
    {//如果不存在,返回-1  
        LL d, x, y;  
        ex_gcd(t, p, x, y, d);  
        return d == 1 ? (x % p + p) % p : -1;  
    } 

    错排 排列组合

    const int mod=1e9+7;  
    const int maxn=1e4+7;  
    LL D[maxn], C[maxn][105];  
    int p[1000050];  
    void init()  
    {  
        D[0]=1;D[1]=0;  
        for(int i=1;i<maxn;i++)//错排  
            D[i]=((i-1)*(D[i-1]+D[i-2])+mod)%mod;  
        int i;  
        for (p[0]=i=1;i<=200000;i++) p[i]=1ll*p[i-1]*i%mod;  
        for (int i = 0; i < maxn; i++)//排列组合  
        {  
            for (int j = 0; j <= min(105, i); j++)  
            {  
                if (j == 0) C[i][j] = 1;  
                else  
                    C[i][j] = (C[i-1][j] + C[i-1][j-1]) % mod;  
            }  
        }  
    }

    C(n,m)

    先init 再comb(n,m) n在下

    namespace COMB
    {
        int F[N<<1], Finv[N<<1], inv[N<<1];
        void init()
        {
            inv[1] = 1;
            for (int i = 2; i < N<<1; i++)
            {
                inv[i] = (LL)(MOD - MOD/i) * inv[MOD%i] % MOD;
            }
            F[0] = Finv[0] = 1;
            for (int i = 1; i < N<<1; i++)
            {
                F[i] = (LL)F[i-1] * i % MOD;
                Finv[i] = (LL)Finv[i-1] * inv[i] % MOD;
            }
        }
        int comb(int n, int m)
        {
            if (m < 0 || m > n) return 0;
            return (LL)F[n] * Finv[n-m] % MOD * Finv[m] % MOD;
        }
    }
    using namespace COMB;

    C(n,m) 不mod

    double ln[3100000];
    int n,p;
    void init()
    {
        int maxc=3e6;
        for(int i=1;i<=maxc;i++)
        {
            ln[i]=log(i);
        }
    }
    
    db comb(int x,int y)
    {
        db ans=0;
        for(int i=1;i<=y;i++)
        {
            ans+=ln[x-i+1]-ln[i];
        }
        return ans;
    }
    
    db calc(int x)
    {
        return x*exp(comb(n,p-1)-comb(n+x,p));
    }

    C(n,m) mod p (p为素数)

    //C(m,n) m在上 n在下,p为素数  
    LL n,m,p;  
      
    LL quick_mod(LL a, LL b)  
    {  
        LL ans = 1;  
        a %= p;  
        while(b)  
        {  
            if(b & 1)  
            {  
                ans = ans * a % p;  
                b--;  
            }  
            b >>= 1;  
            a = a * a % p;  
        }  
        return ans;  
    }  
      
    LL C(LL n, LL m)  
    {  
        if(m > n) return 0;  
        LL ans = 1;  
        for(int i=1; i<=m; i++)  
        {  
            LL a = (n + i - m) % p;  
            LL b = i % p;  
            ans = ans * (a * quick_mod(b, p-2) % p) % p;  
        }  
        return ans;  
    }  
      
    LL Lucas(LL n, LL m)  
    {  
        if(m == 0) return 1;  
        return C(n % p, m % p) * Lucas(n / p, m / p) % p;  
    }  
      
    int main()  
    {  
        int T;  
        scan_d(T);  
        while(T--)  
        {  
            scan_d(n),scan_d(m),scan_d(p);  
            print(Lucas(n,m));  
        }  
        return 0;  
    }  

    C(n,m) mod p (p可能为合数)

      
    const int N = 200005;  
      
    bool prime[N];  
    int p[N];  
    int cnt;  
      
    void isprime()  
    {  
        cnt = 0;  
        memset(prime,true,sizeof(prime));  
        for(int i=2; i<N; i++)  
        {  
            if(prime[i])  
            {  
                p[cnt++] = i;  
                for(int j=i+i; j<N; j+=i)  
                    prime[j] = false;  
            }  
        }  
    }  
      
    LL quick_mod(LL a,LL b,LL m)  
    {  
        LL ans = 1;  
        a %= m;  
        while(b)  
        {  
            if(b & 1)  
            {  
                ans = ans * a % m;  
                b--;  
            }  
            b >>= 1;  
            a = a * a % m;  
        }  
        return ans;  
    }  
      
    LL Work(LL n,LL p)  
    {  
        LL ans = 0;  
        while(n)  
        {  
            ans += n / p;  
            n /= p;  
        }  
        return ans;  
    }  
      
    LL Solve(LL n,LL m,LL P)  
    {  
        LL ans = 1;  
        for(int i=0; i<cnt && p[i]<=n; i++)  
        {  
            LL x = Work(n, p[i]);  
            LL y = Work(n - m, p[i]);  
            LL z = Work(m, p[i]);  
            x -= (y + z);  
            ans *= quick_mod(p[i],x,P);  
            ans %= P;  
        }  
        return ans;  
    }  
      
    int main()  
    {  
        int T;  
        isprime();  
        cin>>T;  
        while(T--)  
        {  
            LL n,m,P;  
            cin>>n>>m>>P;  
            n += m - 2;  
            m--;  
            cout<<Solve(n,m,P)<<endl;  
        }  
        return 0;  
    }  

    FFT:

    //china no.1
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <vector>
    #include <iostream>
    #include <string>
    #include <map>
    #include <stack>
    #include <cstring>
    #include <queue>
    #include <list>
    #include <stdio.h>
    #include <set>
    #include <algorithm>
    #include <cstdlib>
    #include <cmath>
    #include <iomanip>
    #include <cctype>
    #include <sstream>
    #include <functional>
    #include <stdlib.h>
    #include <time.h>
    #include <bitset>
    #include <complex>
    using namespace std;
    
    #define pi acos(-1)
    #define PI acos(-1)
    #define endl '
    '
    #define srand() srand(time(0));
    #define me(x,y) memset(x,y,sizeof(x));
    #define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
    #define close() ios::sync_with_stdio(0); cin.tie(0);
    #define FOR(x,n,i) for(int i=x;i<=n;i++)
    #define FOr(x,n,i) for(int i=x;i<n;i++)
    #define W while
    #define sgn(x) ((x) < 0 ? -1 : (x) > 0)
    #define bug printf("***********
    ");
    #define db double
    #define ll long long
    typedef long long LL;
    const int INF=0x3f3f3f3f;
    const LL LINF=0x3f3f3f3f3f3f3f3fLL;
    const int dx[]={-1,0,1,0,1,-1,-1,1};
    const int dy[]={0,1,0,-1,-1,1,-1,1};
    const int maxn=1e3+10;
    const int maxx=1<<17;
    const double EPS=1e-8;
    const double eps=1e-8;
    const int mod=1e9+7;
    template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
    template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
    template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
    template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}
    template <class T>
    inline bool scan_d(T &ret){char c;int sgn;if (c = getchar(), c == EOF){return 0;}
    while (c != '-' && (c < '0' || c > '9')){c = getchar();}sgn = (c == '-') ? -1 : 1;ret = (c == '-') ? 0 : (c - '0');
    while (c = getchar(), c >= '0' && c <= '9'){ret = ret * 10 + (c - '0');}ret *= sgn;return 1;}
    
    inline bool scan_lf(double &num){char in;double Dec=0.1;bool IsN=false,IsD=false;in=getchar();if(in==EOF) return false;
    while(in!='-'&&in!='.'&&(in<'0'||in>'9'))in=getchar();if(in=='-'){IsN=true;num=0;}else if(in=='.'){IsD=true;num=0;}
    else num=in-'0';if(!IsD){while(in=getchar(),in>='0'&&in<='9'){num*=10;num+=in-'0';}}
    if(in!='.'){if(IsN) num=-num;return true;}else{while(in=getchar(),in>='0'&&in<='9'){num+=Dec*(in-'0');Dec*=0.1;}}
    if(IsN) num=-num;return true;}
    
    void Out(LL a){if(a < 0) { putchar('-'); a = -a; }if(a >= 10) Out(a / 10);putchar(a % 10 + '0');}
    void print(LL a){ Out(a),puts("");}
    //freopen( "in.txt" , "r" , stdin );
    //freopen( "data.txt" , "w" , stdout );
    //cerr << "run time is " << clock() << endl;
    
    typedef complex<long double>Complex;
     /*
     * 进行FFT和IFFT前的反转变换。
     * 位置i和 (i二进制反转后位置)互换
     * len必须去2的幂
     */
    void reverse(Complex y[],int len)
    {
        int i,j,k;
        for(i = 1, j = len/2;i < len-1; i++)
        {
            if(i < j)swap(y[i],y[j]);
            //交换互为小标反转的元素,i<j保证交换一次
            //i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
            k = len/2;
            while( j >= k)
            {
                j -= k;
                k /= 2;
            }
            if(j < k) j += k;
        }
    }
    /*
     * 做FFT
     * len必须为2^k形式,
     * on==1时是DFT,on==-1时是IDFT
    */
    void fft(Complex a[],int n,int on)
    {
        reverse(a,n);
        for(int i=1;i<n;i<<=1)
        {
            Complex wn=Complex(cos(PI/i),on*sin(PI/i));
            for(int j=0;j<n;j+=(i<<1))
            {
                Complex w=Complex(1,0);
                for(int k=0;k<i;k++,w=w*wn)
                {
                    Complex x=a[j+k],y=w*a[j+k+i];
                    a[j+k]=x+y;
                    a[j+k+i]=x-y;
                }
            }
        }
        if(on==-1)
            for(int i=0;i<n;i++)
                a[i].real()/=n;
    }
    struct node
    {
        int c[maxx];
    }A,B,C;
    Complex a[maxx],b[maxx],c[maxx];
    int main()
    {
        int n,x;
        W(scan_d(n))
        {
            FOr(0,n,i)
            {
                scan_d(x);
                x+=20000;
                A.c[x]++;
                B.c[x+x]++;
                C.c[x+x+x]++;
            }
            FOR(0,maxx,i)
            {
                a[i]=A.c[i],b[i]=B.c[i];
            }
            fft(a,maxx,1);
            fft(b,maxx,1);
            FOR(0,maxx,i)
            {
                c[i]=a[i]*(a[i]*a[i]-3.0l*b[i]);
            }
            fft(c,maxx,-1);
            FOR(0,maxx,i)
            {
                LL ans=((LL)(c[i].real()+0.5)+2*C.c[i])/6;
                if(ans>0)
                    printf("%d : %lld
    ",i-60000,ans);
            }
        }
    }

    一个数因子数和:

    #include <cmath>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <map>
    #include <algorithm>
    using namespace std;
    
    #define pi acos(-1)
    #define endl '
    '
    #define srand() srand(time(0));
    #define me(x,y) memset(x,y,sizeof(x));
    #define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
    #define close() ios::sync_with_stdio(0); cin.tie(0);
    #define FOR(x,n,i) for(int i=x;i<=n;i++)
    #define FOr(x,n,i) for(int i=x;i<n;i++)
    #define W while
    #define sgn(x) ((x) < 0 ? -1 : (x) > 0)
    #define bug printf("***********
    ");
    typedef long long LL;
    const int INF=0x3f3f3f3f;
    const LL LINF=1e18+7;
    const int dx[]= {-1,0,1,0,1,-1,-1,1};
    const int dy[]= {0,1,0,-1,-1,1,-1,1};
    const int maxn=2005;
    const int maxx=1e5+100;
    const double EPS=1e-7;
    //const int mod=998244353;
    template<class T>inline T min(T a,T b,T c)
    {
        return min(min(a,b),c);
    }
    template<class T>inline T max(T a,T b,T c)
    {
        return max(max(a,b),c);
    }
    template<class T>inline T min(T a,T b,T c,T d)
    {
        return min(min(a,b),min(c,d));
    }
    template<class T>inline T max(T a,T b,T c,T d)
    {
        return max(max(a,b),max(c,d));
    }
    inline LL Scan()
    {
        LL Res=0,ch,Flag=0;
        if((ch=getchar())=='-')Flag=1;
        else if(ch>='0' && ch<='9')Res=ch-'0';
        while((ch=getchar())>='0'&&ch<='9')Res=Res*10+ch-'0';
        return Flag ? -Res : Res;
    }
    
    LL a,b,mod=9901;
    LL ans=1;
    LL tot,pr[maxx],vis[maxx];  
    void init()//素数表  O(nsqrt(n))  
    {  
        for(int i=2;i<maxx;i++)  
        {  
            if(!vis[i])pr[tot++]=i;  
            for(int j=0;j<tot&&i*pr[j]<maxx;j++)  
            {  
                vis[i*pr[j]]=1;  
                if(i%pr[j]==0)break;  
            }  
        }  
    }  
    LL _pow(LL a,LL n)  
    {  
        LL ret=1;  
        while(n)  
        {  
            if(n&1)  ret=ret*a%mod;  
            a=a*a%mod;  
            n>>=1;  
        }  
        return ret;  
    }  
    LL inv(LL x)  
    {  
        return _pow(x,mod-2);  
    }  
    void solve()
    {
        for(int i=0;i<tot;i++)
        {
            int c=0;
            if(a%pr[i]==0)
            {
                while(a%pr[i]==0)
                {
                    c++; a/=pr[i];
                //    cout<<c<<" "<<pr[i]<<endl;
                }
                if(pr[i]%mod==0) continue;
                else if(pr[i]%mod==1) 
                {
                    ans=(ans*(c*b+1))%mod;
                }
                else 
                {
                    LL ret=(_pow(pr[i],(c*b+1))-1+mod)%mod;
                    ans=(ans*ret*inv(pr[i]-1))%mod;
                }
            }
        }
        if(a>1)
        {
            if(a%mod==0)
                return ;
            else if(a%mod==1)
            {
                ans=(ans*(b+1))%mod;
            }
            else 
            {
                LL ret=(_pow(a,(b+1))-1+mod)%mod;
                ans=(ans*ret*inv(a-1))%mod;
            }
        }
    }
    int main()
    {
        init();
        while(~scanf("%lld%lld",&a,&b))
        {
            ans=1;
            solve();
            cout<<ans<<endl;
        }
    }

    baby-step A^x=B(mod c)

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define LL __int64
    #define N 1000000
    using namespace std;
    struct Node
    {
        int idx;
        int val;
    } baby[N];
    bool cmp(Node n1,Node n2)
    {
        return n1.val!=n2.val?n1.val<n2.val:n1.idx<n2.idx;
    }
    int gcd(int a,int b)
    {
        return b==0?a:gcd(b,a%b);
    }
    int extend_gcd(int a,int b,int &x,int &y)
    {
        if(b==0)
        {
            x=1;
            y=0;
            return a;
        }
        int gcd=extend_gcd(b,a%b,x,y);
        int t=x;
        x=y;
        y=t-a/b*y;
        return gcd;
    }
    int inval(int a,int b,int n)
    {
        int e,x,y;
        extend_gcd(a,n,x,y);
        e=((LL)x*b)%n;
        return e<0?e+n:e;
    }
    int PowMod(int a,int b,int MOD)
    {
        LL ret=1%MOD,t=a%MOD;
        while(b)
        {
            if(b&1)
                ret=((LL)ret*t)%MOD;
            t=((LL)t*t)%MOD;
            b>>=1;
        }
        return (int)ret;
    }
    int BinSearch(int num,int m)
    {
        int low=0,high=m-1,mid;
        while(low<=high)
        {
            mid=(low+high)>>1;
            if(baby[mid].val==num)
                return baby[mid].idx;
            if(baby[mid].val<num)
                low=mid+1;
            else
                high=mid-1;
        }
        return -1;
    }
    int BabyStep(int A,int B,int C)
    {
        LL tmp,D=1%C;
        int temp;
        for(int i=0,tmp=1%C; i<100; i++,tmp=((LL)tmp*A)%C)
            if(tmp==B)
                return i;
        int d=0;
        while((temp=gcd(A,C))!=1)
        {
            if(B%temp) return -1;
            d++;
            C/=temp;
            B/=temp;
            D=((A/temp)*D)%C;
        }
        int m=(int)ceil(sqrt((double)C));
        for(int i=0,tmp=1%C; i<=m; i++,tmp=((LL)tmp*A)%C)
        {
            baby[i].idx=i;
            baby[i].val=tmp;
        }
        sort(baby,baby+m+1,cmp);
        int cnt=1;
        for(int i=1; i<=m; i++)
            if(baby[i].val!=baby[cnt-1].val)
                baby[cnt++]=baby[i];
        int am=PowMod(A,m,C);
        for(int i=0; i<=m; i++,D=((LL)(D*am))%C)
        {
            int tmp=inval(D,B,C);
            if(tmp>=0)
            {
                int pos=BinSearch(tmp,cnt);
                if(pos!=-1)
                    return i*m+pos+d;
            }
        }
        return -1;
    }
    int main()
    {
        int A,B,C;
        while(scanf("%d%d%d",&A,&C,&B)!=EOF)
        {
            if(B>=C)
            {
                puts("Orz,I can’t find D!");
                continue;
            }
            int ans=BabyStep(A,B,C);
            if(ans==-1)
                puts("Orz,I can’t find D!");
            else
                printf("%d
    ",ans);
        }
        return 0;
    }

    莫比乌斯:

    int tot,p[maxx],miu[maxx],v[maxx];
    void Mobius(int n)
    {
        int i,j;
        for(miu[1]=1,i=2;i<=n;i++)
        {
            if(!v[i]) p[tot++]=i,miu[i]=-1;
            for(j=0;j<tot&&i*p[j]<=n;j++)
            {
                v[i*p[j]]=1;
                if(i%p[j]) miu[i*p[j]]=-miu[i];
                else break;
            }
        }
    }

    递推式

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <vector>
    #include <string>
    #include <map>
    #include <set>
    #include <cassert>
    using namespace std;
    #define rep(i,a,n) for (long long i=a;i<n;i++)
    #define per(i,a,n) for (long long i=n-1;i>=a;i--)
    #define pb push_back
    #define mp make_pair
    #define all(x) (x).begin(),(x).end()
    #define fi first
    #define se second
    #define SZ(x) ((long long)(x).size())
    typedef vector<long long> VI;
    typedef long long ll;
    typedef pair<long long,long long> PII;
    const ll mod=1e9+7;
    ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
    // head
    
    long long _,n;
    namespace linear_seq 
    {
        const long long N=10010;
        ll res[N],base[N],_c[N],_md[N];
    
        vector<long long> Md;
        void mul(ll *a,ll *b,long long k) 
        {
            rep(i,0,k+k) _c[i]=0;
            rep(i,0,k) if (a[i]) rep(j,0,k) 
                _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
            for (long long i=k+k-1;i>=k;i--) if (_c[i])
                rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
            rep(i,0,k) a[i]=_c[i];
        }
        long long solve(ll n,VI a,VI b) 
        { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
    //        printf("%d
    ",SZ(b));
            ll ans=0,pnt=0;
            long long k=SZ(a);
            assert(SZ(a)==SZ(b));
            rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
            Md.clear();
            rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
            rep(i,0,k) res[i]=base[i]=0;
            res[0]=1;
            while ((1ll<<pnt)<=n) pnt++;
            for (long long p=pnt;p>=0;p--) 
            {
                mul(res,res,k);
                if ((n>>p)&1) 
                {
                    for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                    rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
                }
            }
            rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
            if (ans<0) ans+=mod;
            return ans;
        }
        VI BM(VI s) 
        {
            VI C(1,1),B(1,1);
            long long L=0,m=1,b=1;
            rep(n,0,SZ(s)) 
            {
                ll d=0;
                rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
                if (d==0) ++m;
                else if (2*L<=n) 
                {
                    VI T=C;
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    L=n+1-L; B=T; b=d; m=1;
                }
                else 
                {
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    ++m;
                }
            }
            return C;
        }
        long long gao(VI a,ll n) 
        {
            VI c=BM(a);
            c.erase(c.begin());
            rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
            return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
        }
    };
    
    int main() 
    {
        for (scanf("%I64d",&_);_;_--) 
        {
            scanf("%I64d",&n);
            printf("%I64d
    ",linear_seq::gao(VI{31,197,1255,7997},n-2));
        }
    }

    1-n 素数个数

    //china no.1
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <vector>
    #include <iostream>
    #include <string>
    #include <map>
    #include <stack>
    #include <cstring>
    #include <queue>
    #include <list>
    #include <stdio.h>
    #include <set>
    #include <algorithm>
    #include <cstdlib>
    #include <cmath>
    #include <iomanip>
    #include <cctype>
    #include <sstream>
    #include <functional>
    #include <stdlib.h>
    #include <time.h>
    #include <bitset>
    #include <complex>
    using namespace std;
    
    //#define pi acos(-1)
    #define PI acos(-1)
    #define endl '
    '
    #define srand() srand(time(0));
    #define me(x,y) memset(x,y,sizeof(x));
    #define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
    #define close() ios::sync_with_stdio(0); cin.tie(0);
    #define FOR(x,n,i) for(int i=x;i<=n;i++)
    #define FOr(x,n,i) for(int i=x;i<n;i++)
    #define W while
    #define sgn(x) ((x) < 0 ? -1 : (x) > 0)
    #define bug printf("***********
    ");
    #define db double
    #define ll long long
    typedef long long LL;
    const int INF=0x3f3f3f3f;
    const LL LINF=0x3f3f3f3f3f3f3f3fLL;
    const int dx[]={-1,0,1,0,1,-1,-1,1};
    const int dy[]={0,1,0,-1,-1,1,-1,1};
    const int maxn=1e3+10;
    const int maxx=1e5+10;
    const double EPS=1e-8;
    const double eps=1e-8;
    const LL mod=1e6+3;
    template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
    template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
    template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
    template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}
    template <class T>
    inline bool scan_d(T &ret){char c;int sgn;if (c = getchar(), c == EOF){return 0;}
    while (c != '-' && (c < '0' || c > '9')){c = getchar();}sgn = (c == '-') ? -1 : 1;ret = (c == '-') ? 0 : (c - '0');
    while (c = getchar(), c >= '0' && c <= '9'){ret = ret * 10 + (c - '0');}ret *= sgn;return 1;}
    
    inline bool scan_lf(double &num){char in;double Dec=0.1;bool IsN=false,IsD=false;in=getchar();if(in==EOF) return false;
    while(in!='-'&&in!='.'&&(in<'0'||in>'9'))in=getchar();if(in=='-'){IsN=true;num=0;}else if(in=='.'){IsD=true;num=0;}
    else num=in-'0';if(!IsD){while(in=getchar(),in>='0'&&in<='9'){num*=10;num+=in-'0';}}
    if(in!='.'){if(IsN) num=-num;return true;}else{while(in=getchar(),in>='0'&&in<='9'){num+=Dec*(in-'0');Dec*=0.1;}}
    if(IsN) num=-num;return true;}
    
    void Out(LL a){if(a < 0) { putchar('-'); a = -a; }if(a >= 10) Out(a / 10);putchar(a % 10 + '0');}
    void print(LL a){ Out(a),puts("");}
    //freopen( "in.txt" , "r" , stdin );
    //freopen( "data.txt" , "w" , stdout );
    //cerr << "run time is " << clock() << endl;
    
    const int N = 5e6 + 2;
    bool np[N];
    int prime[N], pi[N];
    int getprime()
    {
        int cnt = 0;
        np[0] = np[1] = true;
        pi[0] = pi[1] = 0;
        for(int i = 2; i < N; i++)
        {
            if(!np[i]) prime[++cnt] = i;
            pi[i] = cnt;
            for(int j = 1; j <= cnt && i * prime[j] < N; j++)
            {
                np[i * prime[j]] = true;
                if(i % prime[j] == 0)   break;
            }
        }
        return cnt;
    }
    const int M = 7;
    const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
    int phi[PM + 1][M + 1], sz[M + 1];
    void init()
    {
        getprime();
        sz[0] = 1;
        for(int i = 0; i <= PM; i++)
            phi[i][0] = i;
        for(int i = 1; i <= M; i++)
        {
            sz[i] = prime[i] * sz[i - 1];
            for(int j = 1; j <= PM; j++)
                phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
        }
    }
    int sqrt2(LL x)
    {
        LL r = (LL)sqrt(x - 0.1);
        while(r * r <= x)   ++r;
        return int(r - 1);
    }
    int sqrt3(LL x)
    {
        LL r = (LL)cbrt(x - 0.1);
        while(r * r * r <= x)   ++r;
        return int(r - 1);
    }
    LL get_phi(LL x, int s)
    {
        if(s == 0)  return x;
        if(s <= M)  return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
        if(x <= prime[s]*prime[s])   return pi[x] - s + 1;
        if(x <= prime[s]*prime[s]*prime[s] && x < N)
        {
            int s2x = pi[sqrt2(x)];
            LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
            for(int i = s + 1; i <= s2x; i++) ans += pi[x / prime[i]];
            return ans;
        }
        return get_phi(x, s - 1) - get_phi(x / prime[s], s - 1);
    }
    LL getpi(LL x)
    {
        if(x < N)   return pi[x];
        LL ans = get_phi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
        for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; i++)
            ans -= getpi(x / prime[i]) - i + 1;
        return ans;
    }
    LL lehmer_pi(LL x)
    {
        if(x < N)   return pi[x];
        int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
        int b = (int)lehmer_pi(sqrt2(x));
        int c = (int)lehmer_pi(sqrt3(x));
        LL sum = get_phi(x, a) + (LL)(b + a - 2) * (b - a + 1) / 2;
        for (int i = a + 1; i <= b; i++)
        {
            LL w = x / prime[i];
            sum -= lehmer_pi(w);
            if (i > c) continue;
            LL lim = lehmer_pi(sqrt2(w));
            for (int j = i; j <= lim; j++)
                sum -= lehmer_pi(w / prime[j]) - (j - 1);
        }
        return sum;
    }
    int main()
    {
        init();
        LL n;
        while(~scanf("%I64d",&n))
        {
            print(lehmer_pi(n));
        }
        return 0;
    }

    大数:

    #include <iostream>
    #include <cstring>
    #include <stdio.h>
    using namespace std;
    #define DIGIT   4      //四位隔开,即万进制
    #define DEPTH   10000        //万进制
    #define MAX     25100    //题目最大位数/4,要不大直接设为最大位数也行
    typedef int bignum_t[MAX+1];
    int read(bignum_t a,istream&is=cin)
    {
        char buf[MAX*DIGIT+1],ch ;
        int i,j ;
        memset((void*)a,0,sizeof(bignum_t));
        if(!(is>>buf))return 0 ;
        for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--)
        ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ;
        for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0');
        for(i=1;i<=a[0];i++)
        for(a[i]=0,j=0;j<DIGIT;j++)
        a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ;
        for(;!a[a[0]]&&a[0]>1;a[0]--);
        return 1 ;
    }
    
    void write(const bignum_t a,ostream&os=cout)
    {
        int i,j ;
        for(os<<a[i=a[0]],i--;i;i--)
        for(j=DEPTH/10;j;j/=10)
        os<<a[i]/j%10 ;
    }
    
    int comp(const bignum_t a,const bignum_t b)
    {
        int i ;
        if(a[0]!=b[0])
        return a[0]-b[0];
        for(i=a[0];i;i--)
        if(a[i]!=b[i])
        return a[i]-b[i];
        return 0 ;
    }
    
    int comp(const bignum_t a,const int b)
    {
        int c[12]=
        {
            1
        }
        ;
        for(c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++);
        return comp(a,c);
    }
    
    int comp(const bignum_t a,const int c,const int d,const bignum_t b)
    {
        int i,t=0,O=-DEPTH*2 ;
        if(b[0]-a[0]<d&&c)
        return 1 ;
        for(i=b[0];i>d;i--)
        {
            t=t*DEPTH+a[i-d]*c-b[i];
            if(t>0)return 1 ;
            if(t<O)return 0 ;
        }
        for(i=d;i;i--)
        {
            t=t*DEPTH-b[i];
            if(t>0)return 1 ;
            if(t<O)return 0 ;
        }
        return t>0 ;
    }
    void add(bignum_t a,const bignum_t b)
    {
        int i ;
        for(i=1;i<=b[0];i++)
        if((a[i]+=b[i])>=DEPTH)
        a[i]-=DEPTH,a[i+1]++;
        if(b[0]>=a[0])
        a[0]=b[0];
        else
        for(;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++);
        a[0]+=(a[a[0]+1]>0);
    }
    void add(bignum_t a,const int b)
    {
        int i=1 ;
        for(a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++);
        for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);
    }
    void sub(bignum_t a,const bignum_t b)
    {
        int i ;
        for(i=1;i<=b[0];i++)
        if((a[i]-=b[i])<0)
        a[i+1]--,a[i]+=DEPTH ;
        for(;a[i]<0;a[i]+=DEPTH,i++,a[i]--);
        for(;!a[a[0]]&&a[0]>1;a[0]--);
    }
    void sub(bignum_t a,const int b)
    {
        int i=1 ;
        for(a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);
        for(;!a[a[0]]&&a[0]>1;a[0]--);
    }
    
    void sub(bignum_t a,const bignum_t b,const int c,const int d)
    {
        int i,O=b[0]+d ;
        for(i=1+d;i<=O;i++)
        if((a[i]-=b[i-d]*c)<0)
        a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH ;
        for(;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);
        for(;!a[a[0]]&&a[0]>1;a[0]--);
    }
    void mul(bignum_t c,const bignum_t a,const bignum_t b)
    {
        int i,j ;
        memset((void*)c,0,sizeof(bignum_t));
        for(c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++)
        for(j=1;j<=b[0];j++)
        if((c[i+j-1]+=a[i]*b[j])>=DEPTH)
        c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH ;
        for(c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--);
    }
    void mul(bignum_t a,const int b)
    {
        int i ;
        for(a[1]*=b,i=2;i<=a[0];i++)
        {
            a[i]*=b ;
            if(a[i-1]>=DEPTH)
            a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH ;
        }
        for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);
        for(;!a[a[0]]&&a[0]>1;a[0]--);
    }
    
    void mul(bignum_t b,const bignum_t a,const int c,const int d)
    {
        int i ;
        memset((void*)b,0,sizeof(bignum_t));
        for(b[0]=a[0]+d,i=d+1;i<=b[0];i++)
        if((b[i]+=a[i-d]*c)>=DEPTH)
        b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH ;
        for(;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH);
        for(;!b[b[0]]&&b[0]>1;b[0]--);
    }
    void div(bignum_t c,bignum_t a,const bignum_t b)
    {
        int h,l,m,i ;
        memset((void*)c,0,sizeof(bignum_t));
        c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1 ;
        for(i=c[0];i;sub(a,b,c[i]=m,i-1),i--)
        for(h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1)
        if(comp(b,m,i-1,a))h=m-1 ;
        else l=m ;
        for(;!c[c[0]]&&c[0]>1;c[0]--);
        c[0]=c[0]>1?c[0]:1 ;
    }
    
    void div(bignum_t a,const int b,int&c)
    {
        int i ;
        for(c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--);
        for(;!a[a[0]]&&a[0]>1;a[0]--);
    }
    void sqrt(bignum_t b,bignum_t a)
    {
        int h,l,m,i ;
        memset((void*)b,0,sizeof(bignum_t));
        for(i=b[0]=(a[0]+1)>>1;i;sub(a,b,m,i-1),b[i]+=m,i--)
        for(h=DEPTH-1,l=0,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1)
        if(comp(b,m,i-1,a))h=m-1 ;
        else l=m ;
        for(;!b[b[0]]&&b[0]>1;b[0]--);
        for(i=1;i<=b[0];b[i++]>>=1);
    }
    int digit(const bignum_t a,const int b)
    {
        int i,ret ;
        for(ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--);
        return ret%10 ;
    }
    #define SGN(x) ((x)>0?1:((x)<0?-1:0))
    #define ABS(x) ((x)>0?(x):-(x))
    
    int read(bignum_t a,int&sgn,istream&is=cin)
    {
        char str[MAX*DIGIT+2],ch,*buf ;
        int i,j ;
        memset((void*)a,0,sizeof(bignum_t));
        if(!(is>>str))return 0 ;
        buf=str,sgn=1 ;
        if(*buf=='-')sgn=-1,buf++;
        for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--)
        ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ;
        for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0');
        for(i=1;i<=a[0];i++)
        for(a[i]=0,j=0;j<DIGIT;j++)
        a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ;
        for(;!a[a[0]]&&a[0]>1;a[0]--);
        if(a[0]==1&&!a[1])sgn=0 ;
        return 1 ;
    }
    struct bignum
    {
        bignum_t num ;
        int sgn ;
        public :
        inline bignum()
        {
            memset(num,0,sizeof(bignum_t));
            num[0]=1 ;
            sgn=0 ;
        }
        inline int operator!()
        {
            return num[0]==1&&!num[1];
        }
        inline bignum&operator=(const bignum&a)
        {
            memcpy(num,a.num,sizeof(bignum_t));
            sgn=a.sgn ;
            return*this ;
        }
        inline bignum&operator=(const int a)
        {
            memset(num,0,sizeof(bignum_t));
            num[0]=1 ;
            sgn=SGN (a);
            add(num,sgn*a);
            return*this ;
        }
        ;
        inline bignum&operator+=(const bignum&a)
        {
            if(sgn==a.sgn)add(num,a.num);
            else if
            (sgn&&a.sgn)
            {
                int ret=comp(num,a.num);
                if(ret>0)sub(num,a.num);
                else if(ret<0)
                {
                    bignum_t t ;
                    memcpy(t,num,sizeof(bignum_t));
                    memcpy(num,a.num,sizeof(bignum_t));
                    sub (num,t);
                    sgn=a.sgn ;
                }
                else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
            }
            else if(!sgn)
                memcpy(num,a.num,sizeof(bignum_t)),sgn=a.sgn ;
            return*this ;
        }
        inline bignum&operator+=(const int a)
        {
            if(sgn*a>0)add(num,ABS(a));
            else if(sgn&&a)
            {
                int  ret=comp(num,ABS(a));
                if(ret>0)sub(num,ABS(a));
                else if(ret<0)
                {
                    bignum_t t ;
                    memcpy(t,num,sizeof(bignum_t));
                    memset(num,0,sizeof(bignum_t));
                    num[0]=1 ;
                    add(num,ABS (a));
                    sgn=-sgn ;
                    sub(num,t);
                }
                else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
            }
            else if
                (!sgn)sgn=SGN(a),add(num,ABS(a));
            return*this ;
        }
        inline bignum operator+(const bignum&a)
        {
            bignum ret ;
            memcpy(ret.num,num,sizeof (bignum_t));
            ret.sgn=sgn ;
            ret+=a ;
            return ret ;
        }
        inline bignum operator+(const int a)
        {
            bignum ret ;
            memcpy(ret.num,num,sizeof (bignum_t));
            ret.sgn=sgn ;
            ret+=a ;
            return ret ;
        }
        inline bignum&operator-=(const bignum&a)
        {
            if(sgn*a.sgn<0)add(num,a.num);
            else if
            (sgn&&a.sgn)
            {
                int ret=comp(num,a.num);
                if(ret>0)sub(num,a.num);
                else if(ret<0)
                {
                    bignum_t t ;
                    memcpy(t,num,sizeof(bignum_t));
                    memcpy(num,a.num,sizeof(bignum_t));
                    sub(num,t);
                    sgn=-sgn ;
                }
                else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
            }
            else if(!sgn)add (num,a.num),sgn=-a.sgn ;
            return*this ;
        }
        inline bignum&operator-=(const int a)
        {
            if(sgn*a<0)add(num,ABS(a));
            else if(sgn&&a)
            {
                int  ret=comp(num,ABS(a));
                if(ret>0)sub(num,ABS(a));
                else if(ret<0)
                {
                    bignum_t t ;
                    memcpy(t,num,sizeof(bignum_t));
                    memset(num,0,sizeof(bignum_t));
                    num[0]=1 ;
                    add(num,ABS(a));
                    sub(num,t);
                    sgn=-sgn ;
                }
                else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
            }
            else if
                (!sgn)sgn=-SGN(a),add(num,ABS(a));
            return*this ;
        }
        inline bignum operator-(const bignum&a)
        {
            bignum ret ;
            memcpy(ret.num,num,sizeof(bignum_t));
            ret.sgn=sgn ;
            ret-=a ;
            return ret ;
        }
        inline bignum operator-(const int a)
        {
            bignum ret ;
            memcpy(ret.num,num,sizeof(bignum_t));
            ret.sgn=sgn ;
            ret-=a ;
            return ret ;
        }
        inline bignum&operator*=(const bignum&a)
        {
            bignum_t t ;
            mul(t,num,a.num);
            memcpy(num,t,sizeof(bignum_t));
            sgn*=a.sgn ;
            return*this ;
        }
        inline bignum&operator*=(const int a)
        {
            mul(num,ABS(a));
            sgn*=SGN(a);
            return*this ;
        }
        inline bignum operator*(const bignum&a)
        {
            bignum ret ;
            mul(ret.num,num,a.num);
            ret.sgn=sgn*a.sgn ;
            return ret ;
        }
        inline bignum operator*(const int a)
        {
            bignum ret ;
            memcpy(ret.num,num,sizeof (bignum_t));
            mul(ret.num,ABS(a));
            ret.sgn=sgn*SGN(a);
            return ret ;
        }
        inline bignum&operator/=(const bignum&a)
        {
            bignum_t t ;
            div(t,num,a.num);
            memcpy (num,t,sizeof(bignum_t));
            sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn ;
            return*this ;
        }
        inline bignum&operator/=(const int a)
        {
            int t ;
            div(num,ABS(a),t);
            sgn=(num[0]==1&&!num [1])?0:sgn*SGN(a);
            return*this ;
        }
        inline bignum operator/(const bignum&a)
        {
            bignum ret ;
            bignum_t t ;
            memcpy(t,num,sizeof(bignum_t));
            div(ret.num,t,a.num);
            ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn ;
            return ret ;
        }
        inline bignum operator/(const int a)
        {
            bignum ret ;
            int t ;
            memcpy(ret.num,num,sizeof(bignum_t));
            div(ret.num,ABS(a),t);
            ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a);
            return ret ;
        }
        inline bignum&operator%=(const bignum&a)
        {
            bignum_t t ;
            div(t,num,a.num);
            if(num[0]==1&&!num[1])sgn=0 ;
            return*this ;
        }
        inline int operator%=(const int a)
        {
            int t ;
            div(num,ABS(a),t);
            memset(num,0,sizeof (bignum_t));
            num[0]=1 ;
            add(num,t);
            return t ;
        }
        inline bignum operator%(const bignum&a)
        {
            bignum ret ;
            bignum_t t ;
            memcpy(ret.num,num,sizeof(bignum_t));
            div(t,ret.num,a.num);
            ret.sgn=(ret.num[0]==1&&!ret.num [1])?0:sgn ;
            return ret ;
        }
        inline int operator%(const int a)
        {
            bignum ret ;
            int t ;
            memcpy(ret.num,num,sizeof(bignum_t));
            div(ret.num,ABS(a),t);
            memset(ret.num,0,sizeof(bignum_t));
            ret.num[0]=1 ;
            add(ret.num,t);
            return t ;
        }
        inline bignum&operator++()
        {
            *this+=1 ;
            return*this ;
        }
        inline bignum&operator--()
        {
            *this-=1 ;
            return*this ;
        }
        ;
        inline int operator>(const bignum&a)
        {
            return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0);
        }
        inline int operator>(const int a)
        {
            return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0);
        }
        inline int operator>=(const bignum&a)
        {
            return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0);
        }
        inline int operator>=(const int a)
        {
            return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0);
        }
        inline int operator<(const bignum&a)
        {
            return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0);
        }
        inline int operator<(const int a)
        {
            return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0);
        }
        inline int operator<=(const bignum&a)
        {
            return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0);
        }
        inline int operator<=(const int a)
        {
            return sgn<0?(a<0?comp(num,-a)>=0:1):
            (sgn>0?(a>0?comp(num,a)<=0:0):a>=0);
        }
        inline int operator==(const bignum&a)
        {
            return(sgn==a.sgn)?!comp(num,a.num):0 ;
        }
        inline int operator==(const int a)
        {
            return(sgn*a>=0)?!comp(num,ABS(a)):0 ;
        }
        inline int operator!=(const bignum&a)
        {
            return(sgn==a.sgn)?comp(num,a.num):1 ;
        }
        inline int operator!=(const int a)
        {
            return(sgn*a>=0)?comp(num,ABS(a)):1 ;
        }
        inline int operator[](const int a)
        {
            return digit(num,a);
        }
        friend inline istream&operator>>(istream&is,bignum&a)
        {
            read(a.num,a.sgn,is);
            return  is ;
        }
        friend inline ostream&operator<<(ostream&os,const bignum&a)
        {
            if(a.sgn<0)
                os<<'-' ;
            write(a.num,os);
            return os ;
        }
    };
    int main()
    {
        int t;
        cin>>t;
        while(t--)
        {
            int n;
            cin>>n;
            bignum jie,ans;
            jie+=1;
            for(int i=1;i<=n;i++)
            {
                jie*=i;
            }
            for(int i=1;i<=n;i++)
            {
                ans=ans+jie/i;
            }
            cout<<ans<<".0"<<endl;
        }
    }

     有些小错误,有空再慢慢整理消化!ORZ原创教主。

  • 相关阅读:
    关于Redis的介绍,使用以及集群
    关于RESTful详解
    关于Nginx——反向代理
    关于RabbitMQ
    关于Nginx——负载均衡
    关于Nginx——配置虚拟主机
    StringBuffer是字符串缓冲区
    数组的查找操作
    获取任意年的二月有多少天
    快速排序算法
  • 原文地址:https://www.cnblogs.com/hua-dong/p/7831128.html
Copyright © 2020-2023  润新知