环境温度、机舱温度、齿轮箱温度、风速的图形百分比会随着时间发生改变。
风机在发电的过程中发生的异常情况,发生的故障部位及故障发生的时间。异常信息的收集有利于人们进行异常分析以及异常处理。
整理思路:
场景部分:
这里把 3D 当做背景嵌套在 2D 场景中。
这样在初始化图纸的时候,直接反序列化 2D 图纸即可。
事件部分:
2D 图纸中有很多的按钮,通过它们来控制 3D 中的一些动画。
实现思路是在反序列化图纸的时候把 2D、3D 的 模型和视图对象挂载到 window 上,这样在不同的场景中都可以获取到相应的数据模型。
环境部分:
风速、风向、变桨角度这些会在 2D、3D 中所表现,所以可以把他们放到数据池里面,方便管理。
具体代码实现:
场景搭建:上面说了,我们把 3D 当做背景嵌套在 2D 中,所以只需要序列化 2D 即可,里面需要进行背景判断的部分代码。
相关伪代码:
graphView.deserialize('displays/demo/风力发电机/风力发电机结构查看.json', function (json, dm, gv, datas) {
if (json.title) document.title = json.title if (json.a['json.background']) { var bgJSON = json.a['json.background'] if (bgJSON.indexOf('displays') === 0) { var bgGv = new ht.graph.GraphView() bgGv.deserialize(bgJSON) bgGv.addToDOM() graphView.addToDOM(bgGv.getView()) } else if (bgJSON.indexOf('scenes') === 0) { var bgG3d = new ht.graph3d.Graph3dView() bgG3d.deserialize(bgJSON) bgG3d.addToDOM() graphView.addToDOM(bgG3d.getView()) } graphView.handleScroll = function () { } }
})
模拟风速:每隔30s,随机产生一个值,当做风速值。
相关伪代码:
// 模拟风速 mockWindSpeed() { return 8 + Math.random() * 12 }
数据统计:每隔30s,随机变换。
效果:
相关伪代码:
// 指针和扇叶旋转的角度 进行变化 var oldPointerValue = pitchSystem.a('pointer') || 0
// 风机扇叶和变桨系统的旋转角度 var newRotateAngular = (this.windSpeed - 8) * 7.5 * translateAngularRadian.radian var addPointerValue = newRotateAngular - oldPointerValue var oldWindSpeedClip = environmentalData.a('windSpeedClip') || 0 var newWindSpeedClip = (this.windSpeed - 8) / 12 var addWindSpeedClip = newWindSpeedClip - oldWindSpeedClip var anim = { duration: 1e3, easing: (v) => { return v * v }, action: (v) => { var windSpeed = Number(this.windSpeed.toFixed(2)) var Max = Number(MaxValue.toFixed(2)) var average = Number(Aver.toFixed(2)) var windSpeedClip = oldWindSpeedClip + (addWindSpeedClip * v) // 设置发电参数随机数据 generator.a({ windSpeed }) // 设置环境监测随机数据 environmentalData.a({ windSpeed, windSpeedClip }) // 设置统计参数随机数据 statisticalParam.a({ average, Max, windSpeed }) // 设置变航系统的指针角度 pitchSystem.a('pointer', oldPointerValue + (addPointerValue * v)) } }
ht.Default.startAnim(anim)
这里涉及到角度和弧度的转换。1° = Math.PI / 180°,1rad = 180° / Math.PI,因为场景中使用的是弧度制,所以需要把随机出的角度值转换成弧度。
这里解释下代码,先获取到当前的值。然后在加上 随机值 - 当前值。比如当前值为 16,随机出的数值有两种情况,1:比当前值大。2:比当前值小。
如果比当前值大的话,比如18,那么就是这样 16 + (18 - 16) * v ( easing 函数运算后的值)
如果比当前值小的话,比如13,那么就是这样 16 + (13 - 16) * v ( easing 函数运算后的值)
这样当随机的时候,就会从当前值平滑的改变到目标值。
数据统计:每隔30s,监测当前风机的故障信息。
效果:
这里使用了 table.json 文件,通过修改 ht.dataSource 属性添加实时信息。
相关伪代码:
var checkInternals = () => { /** * 故障信息 * 变桨系统 主轴 偏航系统 齿轮箱 油冷装置 发电机 风冷装置 */ var FailureStatus = { // 正常状态 status1: new Map([ [0, ['舱内温度正常,变桨角度正常。', 'i10']], [1, ['舱内温度正常,主轴转速正常。', 'i9']], [2, ['偏航系统精确。', 'i8']], [3, ['齿轮箱温度正常。', 'i1']], [4, ['油冷装置温控表正常。', 'i3']], [5, ['发电机功率正常。', 'i5']], [6, ['风冷装置正常。', 'i2']] ]), // 异常状态 status2: new Map([ [0, ['变桨角度异常。', 'i10']], [1, ['主轴转速偏高。', 'i9']], [2, ['偏航系统出现偏移。', 'i8']], [3, ['齿轮箱温度偏高。', 'i1']], [4, ['油冷装置内积尘过多。', 'i3']], [5, ['发电机电流过大。', 'i5']], [6, ['风冷装置散热不足。', 'i2']] ]), } // 返回设备正常的状况 status 1: 正常 2: 不正常 var mockQquipmentFailure = (status) => { var { rangeRandom } = common var index = rangeRandom(7) // 返回随机出来的设备情况 return FailureStatus[`status${status}`].get(index) } var info = randomInfo[0] var targetTag = randomInfo[1] this.tableArr = table.a('ht.dataSource') var currentTimeFormat = DateUtil.formatHourTime(new Date()) // 默认是正常 如果找到故障关键字的话 赋值为 异常 var status = 'normal' var time = 0 this.tableArr.push({ status, info, time: currentTimeFormat }) }
我们需要两个 Map 数组方便进行取值操作。一个是正常信息数组,一个是异常信息数组。利用随机值当做一个索引,然后取到相对应的状态信息,添加到 table 中。
如果当前的 status 为 normal,说明是正常信息,否则为异常信息。异常信息的话就可以通过 table.json 的渲染回调函数 "drawCell": function(g, text, rect, option) { } 来修改它的颜色,使其高亮。
偏航系统:风机转动的过程中,随着风的位置的不同,通过偏航系统改变方向。
效果:
相关伪代码:
/** * 随机偏航系统 * @param { * } */ randomYawSystem() { var { dm } = this var { d2d } = window var { rangeRandom } = common var poll = () => { // 随机数 30 - 50 var random = 30 + rangeRandom(20) var cabin = dm.getDataByTag('cabin') // 将角度度换算成弧度 然后乘以随机数 实现随机风向 var randomDegrees = translateAngularRadian.radian * random var defaultDegress = translateAngularRadian.radian * 180 ht.Default.startAnim({ duration: 1e3, action: (v) => { var oldValue = cabin.getRotationY() var newValue = randomDegrees var addValue = newValue - oldValue cabin.setRotationY(oldValue + addValue * v) } }) }
}
上面讲到过角度弧度转换,这里先将随机出的角度转换成弧度,然后赋值,进行旋转。
变桨系统:风速的变化影响风机扇叶的角度。
效果:
相关伪代码:
var old3Value = whiteShell3Line.getRotationX() var old4Value = whiteShell4Line.getRotationX() var old5Value = whiteShell5Line.getRotationX() // 指针和扇叶旋转的角度 进行变化 var oldPointerValue = pitchSystem.a('pointer') || 0 // 风机扇叶和变桨系统的旋转角度 var newRotateAngular = (this.windSpeed - 8) * 7.5 * translateAngularRadian.radian var addPointerValue = newRotateAngular - oldPointerValue whiteShell3Line.setRotationX(old3Value + ((newRotateAngular - oldPointerValue))) whiteShell4Line.setRotationX(old4Value + ((newRotateAngular - oldPointerValue))) whiteShell5Line.setRotationX(old5Value + ((newRotateAngular - oldPointerValue)))
先获取到每个扇叶当前的 X 轴旋转值,再获取到需要旋转的角度值,进行赋值。
风机启停:风机的启动和停止
相关伪代码:
var fanWireframe = d3d.getDataByTag('fanWireframe') fanWireframe.setRotationMode('zxy') this.allAnimManage = new Map([['fanRotate', null]])
var fanRotating = (easeType) => { anim = ht.Default.startAnim({ duration: 5e3, easing: (t) => easeIn(t), action: (v) => { fanWireframe.setRotationZ(fanWireframe.getRotationZ() + speed) // 风机轮毂旋转 if (fanWireframe.getRotationZ() <= -6.28) { fanWireframe.setRotationZ(0) } // 风机扇叶 uv 偏移 for (let i = 1; i < 17; i++) { var node = d3d.getDataByTag(`q${i}`) node.s('shape3d.uv.offset', fanOffsetData(v)[i - 1]) } // 暂停命令 if (isStop) { stopFanRotate(fanWireframe.getRotationZ()) anim.pause() anim = null } }, finishFunc: () => { fanRotating(false) } }) this.allAnimManage.set('fanRotate', anim) }
因为可以启动和停止,那么我们就可以通过控制 ht.Default.startAnim() 的返回对象的 resume 和 pause 来达到效果。
所以我把风机旋转的动画添加到了全局对象中,方便进行调用。
setRotationMode('zxy') 方法是设置三维旋转模式,顺序是 z -> x -> y,先进行z轴旋转,再进行x轴旋转,最后进行y轴旋转。设置目的是为了避免坐标轴受外部旋转的影响。
风向: 根据风的角度,判断当前是什么位置的风。
效果:
相关伪代码:
// 判断风向 var windDirection = (rotate) => { let direction switch (true) { case rotate === 0: direction = '南' break case rotate === 90: direction = '东' break case rotate === 180: direction = '北' break case rotate === 240: direction = '西' break case rotate > 0 && rotate < 90: direction = '东南' break case rotate > 90 && rotate < 180: direction = '东北' break case rotate > 180 && rotate < 270: direction = '西北' break case rotate > 270 && rotate < 360: direction = '西南' break default: direction = '没有找到风向' } return direction } // 判断是哪个方向 var angular = randomDegrees * translateAngularRadian.angular var direction = windDirection(angular)
将罗盘的指针角度放到 switch 进行判断,如果找到对应的风向就返回。
总结
风力发电是一个工业互联网的典型例子,我们可以通过对风机模型或者监测数据进行分析,可以减轻我们工作复杂程度,帮助我们快速了解发电内部结构及发电功能。
HT 能做的东西远远不止于此,这需要我们丰富的想象力以及自身过硬的技术。我希望可以通过这篇文章向大家传递一种能量,让大家更有兴趣、迸发更多新鲜的想法,去做更多好玩的东西。