• Codeforces Round #426 (Div. 2) D 线段树优化dp


    D. The Bakery
    time limit per test
    2.5 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.

    Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.

    She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).

    Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.

    Input

    The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.

    The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.

    Output

    Print the only integer – the maximum total value of all boxes with cakes.

    Examples
    input
    4 1
    1 2 2 1
    output
    2
    input
    7 2
    1 3 3 1 4 4 4
    output
    5
    input
    8 3
    7 7 8 7 7 8 1 7
    output
    6
    Note

    In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.

    In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.

    题意:给你一个长度为n的序列 现在可以分成k部分 求每部分不同数的个数的和的最大值

    题解:线段树优化dp

    dp[i][j] 表示前j个分成i部分的最大值

      1 #pragma comment(linker, "/STACK:102400000,102400000")
      2 #include <bits/stdc++.h>
      3 #include <cstdlib>
      4 #include <cstdio>
      5 #include <iostream>
      6 #include <cstdlib>
      7 #include <cstring>
      8 #include <algorithm>
      9 #include <cmath>
     10 #include <cctype>
     11 #include <map>
     12 #include <set>
     13 #include <queue>
     14 #include <bitset>
     15 #include <string>
     16 #include <complex>
     17 #define LL long long
     18 #define mod 1000000007
     19 using namespace std;
     20 int n,k;
     21 int a[35003];
     22 int last[35003];
     23 int dp[60][35003];
     24 map<int,int> mp;
     25 struct node{
     26     int l,r;
     27     int maxn;
     28     int add;
     29 } tree[500005];
     30 void buildtree(int root ,int left,int right,int p){
     31     tree[root].l=left;
     32     tree[root].r=right;
     33     tree[root].add=0;
     34     tree[root].maxn=0;
     35     if(left==right){
     36         tree[root].maxn=dp[p][left-1];//将当前结点的最大值 初始为 前(left-1)个分成p部分的最大值
     37         return ;
     38     }
     39     int mid=(left+right)>>1;
     40     buildtree(root<<1,left,mid,p);
     41     buildtree(root<<1|1,mid+1,right,p);
     42     tree[root].maxn=max(tree[root<<1].maxn,tree[root<<1|1].maxn);
     43 }
     44 void pushdown(int root)
     45 {
     46     if(tree[root].add==0) return ;
     47     tree[root<<1].add+=tree[root].add;
     48     tree[root<<1|1].add+=tree[root].add;
     49     tree[root<<1].maxn+=tree[root].add;
     50     tree[root<<1|1].maxn+=tree[root].add;
     51     tree[root].add=0;
     52 }
     53 void update(int root,int left,int right,int c)
     54 {
     55     if(tree[root].l==left&&tree[root].r==right)
     56     {
     57         tree[root].add+=c;
     58         tree[root].maxn+=c;
     59         return ;
     60     }
     61     pushdown(root);
     62     int mid=(tree[root].l+tree[root].r)>>1;
     63     if(right<=mid)
     64     {
     65         update(root<<1,left,right,c);
     66     }
     67     else
     68     {
     69         if(left>mid)
     70             update(root<<1|1,left,right,c);
     71         else
     72         {
     73             update(root<<1,left,mid,c);
     74             update(root<<1|1,mid+1,right,c);
     75 
     76         }
     77     }
     78     tree[root].maxn=max(tree[root<<1].maxn,tree[root<<1|1].maxn);
     79 }
     80 int query(int root,int left,int right)
     81 {
     82     if(left>right)
     83     return 0;
     84     if(tree[root].l==left&&tree[root].r==right)
     85     {
     86         return  tree[root].maxn;
     87     }
     88     pushdown(root);
     89     int mid=(tree[root].l+tree[root].r)>>1;
     90     if(right<=mid)
     91         return query(root<<1,left,right);
     92     else
     93     {
     94         if(left>mid)
     95             return query(root<<1|1,left,right);
     96         else
     97            return  max(query(root<<1,left,mid),query(root<<1|1,mid+1,right));
     98     }
     99 }
    100 int main()
    101 {
    102     scanf("%d %d",&n,&k);
    103     for(int i=1; i<=n; i++){
    104         scanf("%d",&a[i]);
    105         last[i]=mp[a[i]];
    106         mp[a[i]]=i;
    107     }
    108     for(int i=1;i<=k;i++){
    109         buildtree(1,1,n,i-1);//
    110         for(int j=1;j<=n;j++){
    111             update(1,max(last[j]+1,1),j,1); //第j个只能在 (max(last[j]+1,1),j) 做贡献
    112             dp[i][j]=query(1,1,j);
    113         }
    114     }
    115     printf("%d
    ",dp[k][n]);
    116     return 0;
    117 }
  • 相关阅读:
    批处理操作
    注册表操作
    js 表格操作(兼容模式
    asp解码.net传参
    windows+nginx 查看并发链接数
    windows+nginx负载测试
    开发cocos2dx真机插件遇到问题,以及心得
    react路由
    Redux实现原理解析及应用
    test
  • 原文地址:https://www.cnblogs.com/hsd-/p/7273574.html
Copyright © 2020-2023  润新知