• HDU 3480 斜率dp


    Division

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
    Total Submission(s): 5053    Accepted Submission(s): 1980


    Problem Description
    Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
    Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



    and the total cost of each subset is minimal.
     
    Input
    The input contains multiple test cases.
    In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
    For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

     
    Output
    For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

     
    Sample Input
    2
    3 2
    1 2 4
    4 2
    4 7 10 1
     
    Sample Output
    Case 1: 1
    Case 2: 18
    Hint
    The answer will fit into a 32-bit signed integer.
     
    Source
    题意:给你一个容量为n的集合 现在选取 m个子集 并且要求m个子集的并集为原集合  每个集合的代价为集合内(MAX – MIN)^2 求最少的代价
    题解:
     1 #pragma comment(linker, "/STACK:102400000,102400000")
     2 #include <cstdio>
     3 #include <iostream>
     4 #include <cstdlib>
     5 #include <cstring>
     6 #include <algorithm>
     7 #include <cmath>
     8 #include <cctype>
     9 #include <map>
    10 #include <set>
    11 #include <queue>
    12 #include <bitset>
    13 #include <string>
    14 #include <complex>
    15 #define ll __int64
    16 #define mod 1000000007
    17 using namespace std;
    18 int t;
    19 int n,m;
    20 int a[10004];
    21 int dp[5005][10004];
    22 int q[10004],head,tail;
    23 int main()
    24 {
    25     scanf("%d",&t);
    26     for(int s=1; s<=t; s++)
    27     {
    28         scanf("%d %d",&n,&m);
    29         for(int j=1; j<=n; j++)
    30             scanf("%d",&a[j]);
    31         sort(a+1,a+1+n);
    32         for(int j=1; j<=n; j++)
    33             dp[1][j]=(a[j]-a[1])*(a[j]-a[1]);
    34         for(int i=2; i<=m; i++)
    35         {
    36             head=tail=0;
    37             q[tail++]=i-1;
    38             for(int j=i; j<=n; j++)
    39             {
    40                 while(head+1<tail)
    41                 {
    42                     int p1=q[head],p2=q[head+1];
    43                     int x1=a[p1+1],x2=a[p2+1];
    44                     int y1=dp[i-1][p1]+x1*x1,y2=dp[i-1][p2]+x2*x2;
    45                     if(y2-y1<2*a[j]*(x2-x1))
    46                         head++;
    47                     else
    48                         break;
    49                 }
    50                 int k=q[head];
    51                 dp[i][j]=dp[i-1][k]+(a[j]-a[k+1])*(a[j]-a[k+1]);
    52                 while(head+1<tail&&j!=n)
    53                 {
    54                     int p1=q[tail-2],p2=q[tail-1],p3=j;
    55                     int x1=a[p1+1],x2=a[p2+1],x3=a[p3+1];
    56                     int y1=dp[i-1][p1]+x1*x1,y2=dp[i-1][p2]+x2*x2,y3=dp[i-1][p3]+x3*x3;
    57                     if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2))
    58                         tail--;
    59                     else
    60                         break;
    61                 }
    62                 q[tail++]=j;
    63             }
    64         }
    65         printf("Case %d: %d
    ",s,dp[m][n]);
    66     }
    67     return 0;
    68 }
  • 相关阅读:
    实验二 结对编程 阶段二
    实验一 git代码版本管理
    hadoop启动后,9000端口无法连接,netstat -tpnl中找不到该端口
    HDFS ha 格式化报错:a shared edits dir must not be specified if HA is not enabled.
    为什么zookeeper的节点配置的个数必须是奇数个
    使用root配置的hadoop并启动会出现报错
    安装OpenCV 3 on Raspbian Jessie
    基于树莓派的专用摄像头实时监控
    第九章 构造数据类型实验
    第八章 指针实验
  • 原文地址:https://www.cnblogs.com/hsd-/p/7257643.html
Copyright © 2020-2023  润新知