• Codeforces Round #271 (Div. 2) D 简单dp


    D. Flowers
    time limit per test
    1.5 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, as we all know, Marmot eats flowers. At every dinner he eats some red and white flowers. Therefore a dinner can be represented as a sequence of several flowers, some of them white and some of them red.

    But, for a dinner to be tasty, there is a rule: Marmot wants to eat white flowers only in groups of size k.

    Now Marmot wonders in how many ways he can eat between a and b flowers. As the number of ways could be very large, print it modulo 1000000007 (109 + 7).

    Input

    Input contains several test cases.

    The first line contains two integers t and k (1 ≤ t, k ≤ 105), where t represents the number of test cases.

    The next t lines contain two integers ai and bi (1 ≤ ai ≤ bi ≤ 105), describing the i-th test.

    Output

    Print t lines to the standard output. The i-th line should contain the number of ways in which Marmot can eat between ai and bi flowers at dinner modulo 1000000007 (109 + 7).

    Examples
    Input
    3 2
    1 3
    2 3
    4 4
    Output
    6
    5
    5
    Note
    • For K = 2 and length 1 Marmot can eat (R).
    • For K = 2 and length 2 Marmot can eat (RR) and (WW).
    • For K = 2 and length 3 Marmot can eat (RRR), (RWW) and (WWR).
    • For K = 2 and length 4 Marmot can eat, for example, (WWWW) or (RWWR), but for example he can't eat (WWWR).

    题意:放置'R' 'W'   W必须连续放置t个才合法  问你放置[a,b]个 共有多少种方案  具体看样例

    题解:dp[i] 表示长度为i的合法方案数目  转移方程 dp[i]=dp[i-1]+dp[i-t]

     1 #pragma comment(linker, "/STACK:102400000,102400000")
     2 #include <cstdio>
     3 #include <iostream>
     4 #include <cstdlib>
     5 #include <cstring>
     6 #include <algorithm>
     7 #include <cmath>
     8 #include <cctype>
     9 #include <map>
    10 #include <set>
    11 #include <queue>
    12 #include <bitset>
    13 #include <string>
    14 #include <complex>
    15 #define ll __int64
    16 #define mod 1000000007
    17 using namespace std;
    18 int k,t;
    19 ll sum[100005];
    20 ll dp[100005];
    21 int main()
    22 {
    23     scanf("%d %d",&k,&t);
    24     sum[0]=0;
    25     dp[0]=1;
    26     for(int i=1;i<t;i++){
    27         dp[i]=1;
    28         sum[i]=(sum[i-1]+dp[i])%mod;
    29     }
    30     for(int i=t;i<=100000;i++){
    31         dp[i]=(dp[i-1]+dp[i-t])%mod;
    32         sum[i]=(sum[i-1]+dp[i])%mod;
    33     }
    34     int a,b;
    35     for(int i=1;i<=k;i++){
    36         scanf("%d %d",&a,&b);
    37         printf("%I64d
    ",(sum[b]-sum[a-1]+mod)%mod);
    38     }
    39     return 0;
    40 }
  • 相关阅读:
    蓝翔杯子校内赛练习代码
    [蓝桥杯][算法训练VIP]猴子分苹果
    系统设计部分代码
    坐标离散化
    蒟蒻吃药计划-治疗系列 #round 1 机器分配+挖地雷
    蒟蒻吃药计划
    F小蒟蒻教你卡常
    最长不下降子序列
    最大子段和(DP)
    luogu P1216 (USACO1.5) Number Triangles
  • 原文地址:https://www.cnblogs.com/hsd-/p/7252982.html
Copyright © 2020-2023  润新知